Modern information systems that support complex business processes generally maintain significant amounts of process execution data, particularly records of events corresponding to the execution of activities (event logs). In this paper, we present an approach to analyze such event logs in order to predictively monitor business constraints during business process execution. At any point during an execution of a process, the user can define business constraints in the form of linear temporal logic rules. When an activity is being executed, the framework identifies input data values that are more (or less) likely to lead to the achievement of each business constraint. Unlike reactive compliance monitoring approaches that detect violations only after they have occurred, our predictive monitoring approach provides early advice so that users can steer ongoing process executions towards the achievement of business constraints. In other words, violations are predicted (and potentially prevented) rather than merely detected. The approach has been implemented in the ProM process mining toolset and validated on a real-life log pertaining to the treatment of cancer patients in a large hospital.
Predictive process monitoring has recently gained traction in academia and is maturing also in companies. However, with the growing body of research, it might be daunting for companies to navigate in this domain in order to find, provided certain data, what can be predicted and what methods to use. The main objective of this paper is developing a value-driven framework for classifying existing work on predictive process monitoring. This objective is achieved by systematically identifying, categorizing, and analyzing existing approaches for predictive process monitoring. The review is then used to develop a value-driven framework that can support organizations to navigate in the predictive process monitoring field and help them to find value and exploit the opportunities enabled by these analysis techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.