In a large cohort study of unselected adult outpatients referred to the echocardiography laboratory, the measurements of indexed LV mass applying the ASE/EAE recommended cut-offs yielded remarkable discrepancy in the diagnosis of LVH severity and offered prognostic information beyond that provided by septal thickness only criteria.
Our findings strengthen the pathogenetic link between HCV and B-NHL and show that HCV infection may be associated with the malignant proliferation of defined B-cell subsets other than the immunoglobulin Mk B-cell subset involved in the pathogenesis of mixed cryoglobulinemia type II and associated lymphoplasmacytoid lymphoma type. HCV-related liver disease did not affect the survival of our B-NHL patients.
To analyze the effects of four universal adhesives (Optibond Solo Plus—OB, Universal Bond—UB, Prime&Bond Active—PBA, FuturaBond M + —FB) on human gingival fibroblasts in terms of cytotoxicity, morphology and function. After in vitro exposure for up to 48 h, fibroblast viability was determined by the MTT assay determined, morphology by phase-contrast microscopy and migration by the scratch wound assay. Expression levels of IL1β, IL6, IL8, IL10, TNFα and VEGF genes were assessed by RT-PCR and their protein production by Western blot analysis. Apoptosis and cell cycle were analyzed by flow cytometry. OB and UB induced early morphological changes on fibroblasts (3 h) with extended cell death at 24 h/48 h. Gene expression of collagen type I and fibronectin increased fivefold compared with controls, elastin disappeared and elastase increased threefold, indicating gingival tissue tended to become fibrotic. Only UB and OB increased gene expression of inflammatory markers: IL1β at 3 and 48 h (up to about three times), IL6 and IL8 at 3 h (up to almost four times) which corresponded to the increase of the activated form NF-kB. All adhesives showed an effect on the functionality of fibroblasts with cytotoxic effect time and concentration dependent. Among all the OB and UB adhesives, they showed the greatest cell damage. The in-depth analysis of the effects of universal adhesives and possible functional effects represents an important information for the clinician towards choosing the most suitable adhesive system.
Objectives
The aim of this work is to investigate the biological effects of IQOS smoking on human gingival fibroblasts and human keratinocytes analysing cell viability, morphology, migration, apoptosis and cell cycle.
Background
Electronic cigarettes and tobacco heating systems have been marketed to reduce smoking damages caused by combustion.
Methods
Human gingival fibroblasts and human keratinocytes viability was determined by a colorimetric assay measuring mitochondrial dehydrogenase activity (MTT assay); after an in vitro exposure of 24 h, cell morphology was analysed with scanning electron microscope and cell migration was tested by Scratch assay, a method to mimic the migration of the cells during wound healing in vivo. Apoptosis and cell cycle were analysed with flow cytometry, and the expression of related genes (p53, Bcl2, p16 and p21) was indagated using real‐time polymerase chain reaction.
Results
IQOS extracts increased both cell viability (23%‐41% with fibroblasts and 30%‐79% with keratinocytes) and migration. No morphological alterations were observed. IQOS extracts did not induced an increase in cell death, but rose the number of S‐ and G2/M‐phase cells. IQOS extracts also significantly increased p53 expression by fibroblasts (undiluted and 6.25% dilution, 2‐ and 3.6‐fold higher, respectively) and reduced both Bcl2 (about two‐ and fivefold, respectively) and p21 expressions (about twofold with both extracts), while on keratinocytes both undiluted and 6.25% dilution extracts increased Bcl2 expression (about four‐ and threefold higher, respectively) and reduced p53 expression (about two‐ and fivefold, respectively).
Conclusion
IQOS smoke seemed to induce proliferation as highlighted by a viability assay, and migration and cell cycle analysis. The increased cell proliferation induced by IQOS devices must be carefully investigated for its possible clinical effects on oral cell populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.