Dengue virus (DENV) caused millions of infections around the world annually. Co-infection with different serotypes of DENV is associated with dengue hemorrhagic shock syndrome, leading to an estimate of 50% death rate. No approved therapies are currently available for the treatment of DENV infection. Hence, novel anti-DENV agents are urgently needed for medical therapy. Here we demonstrated that a natural product (2 R,4 R)-1,2,4-trihydroxyheptadec-16-yne (THHY), extracted from avocado (Persea americana) fruit, can inhibit DENV-2 replication in a concentration-dependent manner and efficiently suppresses replication of all DENV serotypes (1–4). We further reveal that the NF-κB-mediated interferon antiviral response contributes to the inhibitory effect of THHY on DENV replication. Using a DENV-infected ICR suckling mouse model, we found that THHY treatment caused an increased survival rate among mice infected with DENV. Collectively, these findings support THHY as a potential agent to control DENV infection.
Summary
MicroRNAs are small noncoding RNAs that are central factors between hepatitis C virus (HCV) and host cellular factors for viral replication and liver disease progression, including liver fibrosis, cirrhosis and hepatocellular carcinoma. In the present study, we found that overexpressing miR‐let‐7c markedly reduced HCV replication because it induced haem oxygenase‐1 (HO‐1) expression by targeting HO‐1 transcriptional repressor Bach1, ultimately leading to stimulating an antiviral interferon response and blockade of HCV viral protease activity. In contrast, the antiviral actions of miR‐let‐7c were attenuated by miR‐let‐7c inhibitor treatment, exogenously expressing Bach1 or suppressing HO‐1 activity and expression. A proposed model indicates a key role for miR‐let‐7c targeting Bach1 to transactivate HO‐1–mediated antiviral actions against HCV. miR‐let‐7c may serve as an attractive target for antiviral development.
Zika
virus (ZIKV) infection, which initially was endemic only in
Africa and Asia, is rapidly spreading throughout Europe, Oceania,
and the Americas. Although there have been enormous efforts, there
is still no approved drug to treat ZIKV infection. Herein, we report
the synthesis and biological evaluation of agents with noncompetitive
mechanism of the ZIKV NS2B/NS3 protease inhibition through the binding
to an allosteric site. Compounds 1 and 2 showed potent activity in both enzymatic and cellular assays. Derivative 1 efficiently reduced the ZIKV protein synthesis and the RNA
replication and prevented the mice from life-threatening infection
and the brain damage caused by ZIKV infection in a ZIKV mouse model.
Hepatitis C virus (HCV) chronically infects 2–3% people of the global population, which leads to liver cirrhosis and hepatocellular carcinoma. Drug resistance remains a serious problem that limits the effectiveness of US Food and Drug Administration (FDA)-approved direct-acting antiviral (DAA) drugs against HCV proteins. The objective of our study was to discover new antivirals from natural products to supplement current therapeutics. We demonstrated that lobohedleolide, isolated from the Formosan soft coral Lobophytum crassum, significantly reduced HCV replication in replicon cells and JFH-1 infection system, with EC50 values of 10 ± 0.56 and 22 ± 0.75 μM, respectively, at non-toxic concentrations. We further observed that the inhibitory effect of lobohedleolide on HCV replication is due to suppression of HCV-induced cyclooxygenase-2 (COX-2) expression. Based on deletion-mutant analysis of the COX-2 promoter, we identified CCAAT/enhancer-binding protein (C/EBP) as a key transcription factor for the down-regulation of COX-2 by lobohedleolide, through which lobohedleolide decreased the phosphorylation of c-Jun NH2-terminal protein kinase and c-Jun to suppress HCV-induced C/EBP expression. The combination treatment of lobohedleolide with clinically used HCV drugs synergistically reduced HCV RNA replication, indicating that lobohedleolide exhibited a high biomedical potential to be used as a supplementary therapeutic agent to control HCV infection.
Dengue virus (DENV) infection, which causes dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is a severe global health problem in tropical and subtropical areas. There is no effective vaccine or drug against DENV infection. Thus, the development of anti-DENV agents is imperative. This study aimed to assess the anti-DENV activity of (E)-guggulsterone using a DENV infectious system. A specific inhibitor targeting signal molecules was used to evaluate the molecular mechanisms of action. Western blotting and qRT-PCR were used to determine DENV protein expression and RNA replication, respectively. Finally, an ICR suckling mouse model was used to examine the anti-DENV activity of (E)-guggulsterone in vivo. A dose-dependent inhibitory effect of (E)-guggulsterone on DENV protein synthesis and RNA replication without cytotoxicity was observed. The mechanistic studied revealed that (E)-guggulsterone stimulates Nrf2-mediated heme oxygenase-1 (HO-1) expression, which increases the antiviral interferon responses and downstream antiviral gene expression by blocking DENV NS2B/3B protease activity. Moreover, (E)-guggulsterone protected ICR suckling mice from life-threatening DENV infection. These results suggest that (E)-guggulsterone can be a potential supplement for controlling DENV replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.