Direct formation of high-quality and wafer scale graphene thin layers on insulating gate dielectrics such as SiO(2) is emergent for graphene electronics using Si-wafer compatible fabrication. Here, we report that in a chemical vapor deposition process the carbon species dissociated on Cu surfaces not only result in graphene layers on top of the catalytic Cu thin films but also diffuse through Cu grain boundaries to the interface between Cu and underlying dielectrics. Optimization of the process parameters leads to a continuous and large-area graphene thin layers directly formed on top of the dielectrics. The bottom-gated transistor characteristics for the graphene films have shown quite comparable carrier mobility compared to the top-layer graphene. The proposed method allows us to achieve wafer-sized graphene on versatile insulating substrates without the need of graphene transfer.
We synthesized centimeter-scale single-to few-layer graphene (FLG) films via chemical vapor deposition (CVD) on Ni foils. We demonstrates that the precipitation mechanism may not be the only important mechanism in the formation of graphene by CVD in Ni system, and that controlling the cooling rate in the CVD process may not be the appropriate way to control the thickness of graphene films. In addition, we are the first to demonstrate the transfer of centimeter-scale FLG from Ni foil to transparent flexible polyethylene terephthalate substrates via an efficient roll-to-roll process. Comparing to rigid substrates, synthesis of graphene on flexible Ni foil has necessity for the use of a roll-to-roll transfer process.
When a eukaryotic mRNA sequence specifying an amino acid motif known as 2A is directly followed by a proline codon, two nonoverlapping proteins are synthesized. From earlier work, the second protein is known to start with this proline codon and is not created by proteolysis. Here we identify the C-terminal amino acid of an upstream 2A-encoded product from Perina nuda picorna-like virus that is glycine specified by the last codon of the 2A-encoding sequence. This is an example of recoding where 2A promotes unconventional termination after decoding of the glycine codon and continued translation beginning with the 39 adjacent proline codon.
Perina nuda picorna-like virus (PnPV) is an insect-infecting RNA virus with morphological and physicochemical characters similar to the Picornaviridae. In this article, we determine the complete genome sequence and analyze the gene organization of PnPV. The genome of PnPV consists of 9476 nucleotides (nts) excluding the poly(A) tail and contains a single large open reading frame (ORF) of 8958 nts (2986 codons) flanked by 473 and 45 nt noncoding regions on the 5' and 3' ends, respectively. Northern blotting did not detect the presence of any subgenomic RNA. The PnPV genome codes for four structural proteins (CP1-4), and determination of their N-terminal sequences by Edman degradation, showed that all four are located in the 5' region of the genome. The 3' part of the PnPV genome contains the consensus sequence motifs for picornavirus RNA helicase, cysteine protease, and RNA-dependent RNA polymerase (RdRp) in that order from the 5' to the 3' end. In all of these characters, the genome organization of PnPV resembles the mammalian picornaviruses and two other insect picorna-like viruses, infectious flacherie virus (IFV) of the silkworm and Sacbrood virus (SBV) of the honeybee. In a phylogenetic tree based on the eight conserved domains in the RdRp sequence, PnPV formed a separate cluster with IFV and SBV, which suggests that these three insect picorna-like viruses might constitute a novel group of insect-infecting RNA viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.