The goal of single-image super-resolution is to generate a high-quality high-resolution image based on a given low-resolution input. It is an ill-posed problem which requires exemplars or priors to better reconstruct the missing high-resolution image details. In this paper, we propose to split the feature space into numerous subspaces and collect exemplars to learn priors for each subspace, thereby creating effective mapping functions. The use of split input space facilitates both feasibility of using simple functions for super-resolution, and efficiency of generating highresolution results. High-quality high-resolution images are reconstructed based on the effective learned priors. Experimental results demonstrate that the proposed algorithm performs efficiently and effectively over state-of-the-art methods.
The goal of face hallucination is to generate highresolution images with fidelity from low-resolution ones. In contrast to existing methods based on patch similarity or holistic constraints in the image space, we propose to exploit local image structures for face hallucination. Each face image is represented in terms of facial components, contours and smooth regions. The image structure is maintained via matching gradients in the reconstructed highresolution output. For facial components, we align input images to generate accurate exemplars and transfer the high-frequency details for preserving structural consistency. For contours, we learn statistical priors to generate salient structures in the high-resolution images. A patch matching method is utilized on the smooth regions where the image gradients are preserved. Experimental results demonstrate that the proposed algorithm generates hallucinated face images with favorable quality and adaptability.
Abstract. We propose a super-resolution method that exploits selfsimilarities and group structural information of image patches using only one single input frame. The super-resolution problem is posed as learning the mapping between pairs of low-resolution and high-resolution image patches. Instead of relying on an extrinsic set of training images as often required in example-based super-resolution algorithms, we employ a method that generates image pairs directly from the image pyramid of one single frame. The generated patch pairs are clustered for training a dictionary by enforcing group sparsity constraints underlying the image patches. Super-resolution images are then constructed using the learned dictionary. Experimental results show the proposed method is able to achieve the state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.