In this study, detection of 20 FITC-derivatized amino acids using an MEEKC-LIF was demonstrated. In order to achieve good separation for hydrophobic amino acids, the MEEKC method was employed and detection limits were obtained in the range of 0.32-2.2 nM, which is comparable to previous reports on amino acid analyses. Furthermore, a significant reduction in the reaction time from 1 h for conventional derivatization to 3 min for the microwave-assisted derivatization was observed and achieved, as opposed to the traditional pretreatment of real sample due to its complexity prior to the analysis of amino acid content. Finally, this microwave-assisted derivatization MEEKC-LIF method successfully determined amino acids in beverage, food, and biological samples (rat brain) with good recovery.
An improved method for the synthesis of high-performance and water-soluble quantum dots (QDs) involving the encapsulation of mercaptosuccinic acid coated QDs (MSA-QDs) with poly(diallyldimethylammonium chloride) (PDDA) followed by their direct photoactivation with fluorescent radiation near 295 K to yield PDDA-coated QDs (PDDA-QDs) has been demonstrated. The quantum yield (QY) of the PDDA-QDs was significantly improved from 0.6 (QY of MSA-QDs) to 48%. By using this synthetic strategy, highly photoluminescent PDDA-QDs of varied size were readily prepared. The surface properties of PDDA-QDs and MSA-QDs were extensively characterized. The highly luminescent and positively charged PDDA-QDs serve as a useful and convenient tool for protein adsorption. With a Δ(5)-3-ketosteroid isomerase adsorbed PDDA-QD complex, the biorecognition of steroids was demonstrated through the application of fluorescent resonance energy transfer.
This study introduces a method of patterning carbon nanotube (CNTs) forests that is both fast and simple. We found that, as commercially available oil-based markers undergo nanotube synthesis, a thin film forms that prevents the catalyst, ferrocene, from coming into contact with the surface of the test sample. This, thus, blocks CNT growth. Through further deduction, we used styrene maleic anhydride (SMA) to conduct CNT patterning, in addition to analyzing the relationship between the weight percent concentration of the SMA and the extent to which it blocked CNT growth. We developed two separate methods for applying ink to soft and hard substrates: one method involved ink printing and the other laser stripping. In the CNT pattern we produced, a minimum line width of around 10 µm was attained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.