Erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), shows superior efficacy in patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations (EGFR Mut+). However, almost all tumors eventually develop resistance to erlotinib. Recently, the Phase II JO25567 study reported significant prolongation of progression-free survival (PFS) by erlotinib plus bevacizumab combination compared with erlotinib in EGFR Mut+ NSCLC. Herein, we established a preclinical model which became refractory to erlotinib after long-term administration and elucidated the mode of action of this combination. In this model, tumor regrowth occurred after remarkable shrinkage by erlotinib; regrowth was successfully inhibited by erlotinib plus bevacizumab. Tumor vascular endothelial growth factor (VEGF) was greatly reduced by erlotinib in the erlotinib-sensitive phase but significantly increased in the erlotinib-refractory phase despite continued treatment with erlotinib. Although EGFR phosphorylation remained suppressed in the erlotinib-refractory phase, phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT, and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) were markedly higher than in the erlotinib-sensitive phase; among these, pERK was suppressed by erlotinib plus bevacizumab. MVD was decreased significantly more with erlotinib plus bevacizumab than with each drug alone. In conclusion, the erlotinib plus bevacizumab combination demonstrated promising efficacy in the B901L xenograft model of EGFR Mut+ NSCLC. Re-induction of VEGF and subsequent direct or indirect VEGF-dependent tumor growth was suggested as a major mechanism of erlotinib resistance, and erlotinib plus bevacizumab achieved remarkably prolonged antitumor activity in this model.
Brain metastases are common in patients with non-small-cell lung cancer (NSCLC). The efficacy of bevacizumab, an antivascular endothelial growth factor (VEGF) humanized antibody, has been demonstrated in patients with nonsquamous NSCLC. We established a transplantable NSCLC cell line (Nluc-H1915) that stably expresses NanoLuc® reporter and confirmed the correlation between total Nluc activity in tumor and tumor volume in vivo. SCID mice inoculated with these cells through the internal carotid artery formed reproducible brain metastases, in which human VEGF was detected. Next, after metastases were established in the model mice (15-17 days), they were intraperitoneally administered weekly doses of human immunoglobulin G (HuIgG) or bevacizumab. Nluc activity in the brain was significantly lower in bevacizumab-treated mice than in HuIgG-treated mice. Additionally, bevacizumab concentration in the brain was higher in mice with brain metastasis than in normal mice, and bevacizumab was primarily observed in brain metastasis lesions. The microvessel density in brain metastasis was lower in bevacizumab-treated mice than in HuIgG-treated mice. We believe bevacizumab's anti-proliferative effect on brain metastasis is due to anti-angiogenic activity achieved by its penetration into brain metastases; this suggests that a bevacizumab-containing regimen may be a promising treatment option for patients with NSCLC brain metastasis.
Combination therapy of erlotinib plus bevacizumab improves progression-free survival of patients with epidermal growth factor receptor–mutated (EGFR-mutated) advanced non–small-cell lung cancer (NSCLC) compared with erlotinib alone. Although improved delivery and distribution of erlotinib to tumours as a result of the normalization of microvessels by bevacizumab is thought to be one of the underlying mechanisms, there is insufficient supporting evidence. B901L cells derived from EGFR-mutated NSCLC were subcutaneously implanted into mice, and mice were treated with bevacizumab or human IgG followed by treatment with erlotinib. The distribution of erlotinib in their tumours at different times after erlotinib administration was analysed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). We also analysed the distribution of erlotinib metabolites and the distribution of erlotinib in tumours refractory to erlotinib, which were established by long-term treatment with erlotinib. We found that erlotinib was broadly diffused in the tumours from B901L-implanted xenograft mice, independently of bevacizumab treatment. We also found that erlotinib metabolites were co-localized with erlotinib and that erlotinib in erlotinib-refractory tumours was broadly distributed throughout the tumour tissue. Multivariate imaging approaches using MALDI MSI as applied in this study are of great value for pharmacokinetic studies in drug development.
Brain metastases are common complication in cancer patients. Immune checkpoint inhibitors show therapeutic benefits also in patients with central nervous system (CNS) metastases. However, their antitumor effects on metastatic tumors and their underlying mechanisms are still poorly understood. In this study we investigated the antitumor effect of anti-programmed death-ligand 1 (PD-L1) antibody on metastatic brain tumors and evaluated immune responses during treatment. We employed a hematogenous brain metastasis xenograft model using immunodeficient mice with murine lymphocyte infusions. A human non-small-cell lung cancer (NSCLC) cell line stably expressing NanoLuc® reporter (Nluc-H1915) was inoculated from the internal carotid artery of SCID mice. After metastases were established (24 days after inoculation), splenocytes prepared from H1915-immunized BALB/c mice were injected intravenously and mouse IgG or anti-PD-L1 antibody treatment was started (day 1). Evaluated by Nluc activity, tumor volume in the brain on day 14 was significantly lower in anti-PD-L1-treated mice than in mouse IgG-treated mice. Furthermore CD8+ cells were primarily infiltrated intratumorally and peritumorally and anti-PD-L1 treatment induced a significantly higher proportion of Granzyme B (GzmB)+ cells among CD8+ T cells. The antitumor effect of anti-PD-L1 antibody on brain metastasis is thought to be achieved by the enhanced activation of infiltrated CD8+ T cells into metastatic brain tumor. These results suggest that anti-PD-L1 antibody-containing regimens may be promising treatment options for cancer patients with brain metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.