In population biology, the Allee dynamics refer to negative growth rates below a critical population density. In this paper, we study a reaction-diffusion (RD) model of popoulation growth and dispersion in one dimension, which incorporates the Allee effect in both the growth and mortatility rates. In the absence of diffusion, the bifurcation diagram displays regions of both finite population density and zero population density, i.e., extinction. The early signatures of the transition to extinction at the bifurcation point are computed in the presence of additive noise. For the full RD model, the existence of travelling wave solutions of the population density is demonstrated. The parameter regimes in which the travelling wave advances (range expansion) and retreats are identified. In the weak Allee regime, the transition from the pushed to the pulled wave is shown as a function of the mortality rate constant. The results obtained are in agreement with the recent experimental observations on budding yeast populations .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.