A cross-sectional study of 679 Alzheimer's disease patients from thirteen sites in nine states provides a unique opportunity to estimate costs of Alzheimer's disease care by disease stage and care setting and to explore potential areas of cost savings. In 1996 annual costs of caring for patients with mild, moderate, and severe Alzheimer's disease were $18,408, $30,096, and $36,132, respectively. Monthly savings of $2,029 in formal services are possible if disease progression can be slowed. Annual institutional cost savings of $9,132 also are achievable if alternative residential settings are used.
Development of effective disease-resistance to a broad-range of pathogens in crops usually requires tremendous resources and effort when traditional breeding approaches are taken. Genetic engineering of disease-resistance in crops has become popular and valuable in terms of cost and efficacy. Due to long-lasting and broad-spectrum of effectiveness against pathogens, employment of systemic acquired resistance (SAR) for the genetic engineering of crop disease-resistance is of particular interest. In this report, we explored the potential of using SAR-related genes for the genetic engineering of enhanced resistance to multiple diseases in tomato. The Arabidopsis NPR1 (nonexpresser of PR genes) gene was introduced into a tomato cultivar, which possesses heat-tolerance and resistance to tomato mosaic virus (ToMV). The transgenic lines expressing NPR1 were normal as regards overall morphology and horticultural traits for at least four generations. Disease screens against eight important tropical diseases revealed that, in addition to the innate ToMV-resistance, the tested transgenic lines conferred significant level of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW), and moderate degree of enhanced resistance to gray leaf spot (GLS) and bacterial spot (BS). Transgenic lines that accumulated higher levels of NPR1 proteins exhibited higher levels and a broader spectrum of enhanced resistance to the diseases, and enhanced disease-resistance was stably inherited. The spectrum and degree of these NPR1-transgenic lines are more significant compared to that of transgenic tomatoes reported to date. These transgenic lines may be further explored as future tomato stocks, aiming at building up resistance to a broader spectrum of diseases.
Ralstonia solanacearum is the causal agent of bacterial wilt (BW), one of the most important bacterial diseases worldwide. We used cDNA microarray to survey the gene expression profile in transgenic tomato (Solanum lycopersicum) overexpressing Arabidopsis (Arabidopsis thaliana) CBF1 (AtCBF1), which confers tolerance to BW. The disease-resistant phenotype is correlated with constitutive expression of the Related-to-ABI3/VP1 (RAV) transcription factor, ethylene-responsive factor (ERF) family genes, and several pathogenesis-related (PR) genes. Using a transient assay system, we show that tomato RAV2 (SlRAV2) can transactivate the reporter gene driven by the SlERF5 promoter. Virus-induced gene silencing of SlERF5 and SlRAV2 in AtCBF1 transgenic and BW-resistant cultivar Hawaii 7996 plants gave rise to plants with enhanced susceptibility to BW. Constitutive overexpression of SlRAV2 in transgenic tomato plants induced the expression of SlERF5 and PR5 genes and increased BW tolerance, while knockdown of expression of SlRAV2 inhibited SlERF5 and PR5 gene expression under pathogen infection and significantly decreased BW tolerance. In addition, transgenic tomato overexpressing SlERF5 also accumulated higher levels of PR5 transcripts and displayed better tolerance to pathogen than wild-type plants. From these results, we conclude that SlERFs may act as intermediate transcription factors between AtCBF1 and PR genes via SlRAV in tomato, which results in enhanced tolerance to BW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.