Multiscale entropy (MSE) was recently developed to evaluate the complexity of time series over different time scales. Although the MSE algorithm has been successfully applied in a number of different fields, it encounters a problem in that the statistical reliability of the sample entropy (SampEn) of a coarse-grained series is reduced as a time scale factor is increased. Therefore, in this paper, the concept of a composite multiscale entropy (CMSE) is introduced to overcome this difficulty. Simulation results on both white noise and 1/f noise show that the CMSE provides higher entropy reliablity than the MSE approach for large time scale factors. On real data analysis, both the MSE and CMSE are applied to extract features from fault bearing vibration signals. Experimental results demonstrate that the proposed CMSE-based feature extractor provides higher separability than the MSE-based feature extractor.
Abstract:Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE) was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. Simulation results demonstrated that the proposed method is a very powerful algorithm for bearing fault diagnosis and has much better performance than the methods based on single scale permutation entropy (PE) and multiscale entropy (MSE).
Abstract:The objective of this research is to investigate the feasibility of utilizing the multi-scale analysis and support vector machine (SVM) classification scheme to diagnose the bearing faults in rotating machinery. For complicated signals, the characteristics of dynamic systems may not be apparently observed in a scale, particularly for the fault-related features of rotating machinery. In this research, the multi-scale analysis is employed to extract the possible fault-related features in different scales, such as the multi-scale entropy (MSE), multi-scale permutation entropy (MPE), multi-scale root-mean-square (MSRMS) and multi-band spectrum entropy (MBSE). Some of the features are then selected as the inputs of the support vector machine (SVM) classifier through the Fisher score (FS) as well as the Mahalanobis distance (MD) evaluations. The vibration signals of bearing test data at Case Western Reserve University (CWRU) are utilized as the illustrated examples. The analysis results demonstrate that an accurate bearing defect diagnosis can be achieved by using the extracted machine features in different scales. It can be also noted that the diagnostic results of bearing faults can be further enhanced through the feature selection procedures of FS and MD evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.