Multiscale entropy (MSE) was recently developed to evaluate the complexity of time series over different time scales. Although the MSE algorithm has been successfully applied in a number of different fields, it encounters a problem in that the statistical reliability of the sample entropy (SampEn) of a coarse-grained series is reduced as a time scale factor is increased. Therefore, in this paper, the concept of a composite multiscale entropy (CMSE) is introduced to overcome this difficulty. Simulation results on both white noise and 1/f noise show that the CMSE provides higher entropy reliablity than the MSE approach for large time scale factors. On real data analysis, both the MSE and CMSE are applied to extract features from fault bearing vibration signals. Experimental results demonstrate that the proposed CMSE-based feature extractor provides higher separability than the MSE-based feature extractor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.