Ethanol extracts (Et) from the stem (S) and leaf (L) of Vitis thunbergii var. taiwaniana (VTT) were used to investigate yeast α-glucosidase and porcine kidney dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Both VTT-Et showed complete α-glucosidase inhibition at 0.1 mg/mL; VTT-S-Et and VTT-L-Et showed 26 and 11% DPP-IV inhibition, respectively, at 0.5 mg/mL. The VTT-Et interventions (20 and 50 mg/kg) resulted in improvements in impaired glucose tolerance of diet-induced obese rats. (+)-Hopeaphenol, (+)-vitisin A, and (-)-vitisin B were isolated from the ethyl acetate fractions of S-Et and showed yeast α-glucosidase inhibition (IC50 = 18.30, 1.22, and 1.02 μM) and porcine kidney DPP-IV inhibition (IC50 = 401, 90.75, and 15.3 μM) compared to acarbose (6.39 mM) and sitagliptin (47.35 nM), respectively. Both (+)-vitisin A and (-)-vitisin B showed mixed noncompetitive inhibition against yeast α-glucosidase and porcine kidney DPP-IV, respectively. These results proposed that VTT extracts might through inhibitions against α-glucosidase and DPP-IV improve the impaired glucose tolerance in diet-induced obese rats.
Protein N-terminal acetylation is one of the most common modifications occurring co- and post-translationally on either eukaryote or prokaryote proteins. However, compared to other protein modifications, the physiological role of protein N-terminal acetylation is relatively unclear. To explore the biological functions of protein N-terminal acetylation, a robust and large-scale method for qualitative and quantitative analysis of this modification is required. Enrichment of N(α)-acetylated peptides or depletion of the free N-terminal and internal tryptic peptides prior to analysis by mass spectrometry are necessary based on current technologies. This study demonstrated a simple strong cation exchange (SCX) fractionation method to selectively enrich N(α)-acetylated tryptic peptides via dimethyl labeling without the need for tedious protective labeling and depleting procedures. This method was introduced for the comprehensive analysis of N-terminal acetylated proteins from HepG2 cells. Several hundred N-terminal acetylation sites were readily identified in a single SCX flow-through fraction. Moreover, the N(α)-acetylated peptides of some protein isoforms were simultaneously observed in the SCX flow-through fraction, which indicated that this approach can be utilized to discriminate protein isoforms with very similar full sequences but different N-terminal sequences, such as β-actin/γ-actin, ERK1/ERK2, α-centractin/β-centractin, and ADP/ATP translocase 2 and 3. Compared to other methods, this method is relatively simple and can be directly implemented in a two-dimensional separation (SCX-RP)-mass spectrometry scheme for quantitative N-terminal proteomics using stable-isotope dimethyl labeling.
In this study, hot-water extracts (HW) from roots of Vitis thunbergii var. taiwaniana (VTT-R) were shown to lower levels of lipid accumulation significantly (P < 0.01 or 0.001) compared to the control in 3T3-L1 adipocytes. The VTT-R-HW (40 mg/kg) interventions concurrent with a high-fat (HF) diet in C57BL/6 mice over a 5 eek period were shown to reduce body weights significantly (P < 0.05) compared to those of mice fed a HF diet under the same food-intake regimen. The (+)-ε-viniferin isolated from VTT-R-HW was shown to reduce the size of lipid deposits significantly compared to the control (P < 0.05 or 0.001) in 3T3-L1 adipocytes, and dose-dependent 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitions showed that the 50% inhibitory concentration was calculated to be 96 μM. The two-stage (+)-ε-viniferin interventions (10 mg/kg, day 1 to day 38; 25 mg/kg, day 39 to day 58) were shown to lower mice body weights significantly (P < 0.05 or 0.001), the weight ratio of mesenteric fat, blood glucose, total cholesterol, and low-density lipoprotein compared to that of the HF group under the same food-intake regimen but without concurrent VTT-R-HW interventions. It might be possible to use VTT-R-HW or (+)-ε-viniferin as an ingredient in the development of functional foods for weight management, and this will need to be investigated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.