Airborne laser scanning (ALS) can be utilised to derive canopy height models (CHMs) for individual tree crown (ITC) delineation. In the case of forest areas subject to defoliation and dieback as a result of disease, increased irregularities across the canopy can add complications to the segmentation of ITCs. Research has yet to address this issue in order to suggest appropriate techniques to apply under conditions of forest stands that are infected by phytopathogens. This study aimed to find the best method of ITC delineation for larch canopies affected by defoliation as a result of a Phytophthora ramorum infection. Sample plots from two study sites in Wales, United Kingdom, were selected for ITC segmentation assessment across a range of infection levels and stand characteristics. The performance of two segmentation algorithms (marker-controlled watershed and region growing) were tested for a series of CHMs generated by a standard normalised digital surface model and a pit-free algorithm, across a range of spatial resolutions (0.15 m, 0.25 m and 0.5 m). The results show that the application of a pit-free CHM generation method produced improved segmentation accuracies in moderately and heavily infected larch forest, compared to the standard CHM. The success of ITC delineations was also influenced by CHM resolution. Across all plots the CHMs with a 0.25 m pixel size performed consistently well. However, lower and higher CHM resolutions also provided improved delineation accuracies in plots dominated by larger and smaller canopies respectively. The selected segmentation method also influenced the success of ITC delineations, with the marker-controlled watershed algorithm generating significantly more accurate results than the region growing algorithm (p < 0.10). The results demonstrate that ITCs in forest stands infected with Phytophthora ramorum can be successfully delineated from ALS when a pit-free algorithm is applied to CHM generation.
Large‐scale dieback of ash trees (Fraxinus spp.) caused by the fungus Hymenoscyphus fraxineus is posing an immense threat to forest health in Europe, requiring effective monitoring at large scales. In this study, a pipeline was created to find ash trees and classify dieback severity using high‐resolution hyperspectral imagery of individual tree crowns (ITCs). Hyperspectral data were collected in four forest sites near Cambridge, UK, where 422 ITCs were manually delineated and labelled using field‐measurements of species and dieback severity (for ash trees). Four algorithms, namely linear discriminant analysis (LDA), principal components analysis coupled with LDA (PCA‐LDA), partial least squares discriminant analysis (PLS‐DA) and random forest (RF), were used to build classification models for species and dieback severity classification. The effect of dark‐pixel filtering on classification accuracy was evaluated. The best performing models were then coupled with automatic ITC segmentation to map species and ash dieback distribution over 16.8 hectares of woodland. We calculated and partitioned the coefficient of variation (CV) of the reflected ash spectra to find variable wavebands associated with dieback. PLS‐DA and LDA were most accurate for classifying ITC species identifies (overall accuracy >90%), whereas RF was most accurate for classifying ash dieback severity (overall accuracy 77%). Dark pixel filtering further increased the accuracy of species classification (+6%), but not disease classification. The reflectances of narrow blue (415 nm), red‐edge (680 nm) and NIR (760 nm) bands had high CV across disease classes and should be included if multispectral imagery were to be used to monitor ash dieback. The study demonstrates the possibility of using remote sensing to forward epidemiological research by monitoring forest pathogens in landscape scales, which would allow temperate forest managers to control pathogen outbreaks, assess associated impacts and restore affected forests much more effectively.
Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB). The S-band frequency (3.1-3.3 GHz) lies between the longer L-band (1-2 GHz) and the shorter C-band (5-6 GHz) and has been insufficiently studied for forest applications due to limited data availability. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest biophysical properties. To understand the scattering mechanisms in forest canopies at S-band the Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model was used. S-band backscatter was found to have high sensitivity to the forest canopy characteristics across all polarisations and incidence angles. This sensitivity originates from ground/trunk interaction as the dominant scattering mechanism related to broadleaved species for co-polarised mode and specific incidence angles. The study was carried out in the temperate mixed forest at Savernake Forest and Wytham Woods in southern England, where airborne S-band SAR imagery and field data are available from the recent AirSAR campaign. Field data from the test sites revealed wide ranges of forest parameters, including average canopy height (6-23 m), diameter at breast-height (7-42 cm), basal area (0.2-56 m 2 /ha), stem density (20-350 trees/ha) and woody biomass density (31-520 t/ha). S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest AGB with least error between 90.63 and 99.39 t/ha and coefficient of determination (r 2 ) between 0.42 and 0.47 for the co-polarised channel at 0.25 ha resolution. The conclusion is that S-band SAR data such as from NovaSAR-S is suitable for monitoring forest aboveground biomass less than 100 t/ha at 25 m resolution in low to medium incidence angle range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.