Large‐scale dieback of ash trees (Fraxinus spp.) caused by the fungus Hymenoscyphus fraxineus is posing an immense threat to forest health in Europe, requiring effective monitoring at large scales. In this study, a pipeline was created to find ash trees and classify dieback severity using high‐resolution hyperspectral imagery of individual tree crowns (ITCs). Hyperspectral data were collected in four forest sites near Cambridge, UK, where 422 ITCs were manually delineated and labelled using field‐measurements of species and dieback severity (for ash trees). Four algorithms, namely linear discriminant analysis (LDA), principal components analysis coupled with LDA (PCA‐LDA), partial least squares discriminant analysis (PLS‐DA) and random forest (RF), were used to build classification models for species and dieback severity classification. The effect of dark‐pixel filtering on classification accuracy was evaluated. The best performing models were then coupled with automatic ITC segmentation to map species and ash dieback distribution over 16.8 hectares of woodland. We calculated and partitioned the coefficient of variation (CV) of the reflected ash spectra to find variable wavebands associated with dieback. PLS‐DA and LDA were most accurate for classifying ITC species identifies (overall accuracy >90%), whereas RF was most accurate for classifying ash dieback severity (overall accuracy 77%). Dark pixel filtering further increased the accuracy of species classification (+6%), but not disease classification. The reflectances of narrow blue (415 nm), red‐edge (680 nm) and NIR (760 nm) bands had high CV across disease classes and should be included if multispectral imagery were to be used to monitor ash dieback. The study demonstrates the possibility of using remote sensing to forward epidemiological research by monitoring forest pathogens in landscape scales, which would allow temperate forest managers to control pathogen outbreaks, assess associated impacts and restore affected forests much more effectively.
Burn-area products from remote sensing provide the backbone for research in fire ecology, management, and modelling. Landsat imagery could be used to create an accurate burn-area map time series at ecologically relevant spatial resolutions. However, the low temporal resolution of Landsat has limited its development in wet tropical and subtropical regions due to high cloud cover and rapid burn-area revegetation. Here, we describe a 34-year Landsat-based burn-area product for wet, subtropical Hong Kong. We overcame technical obstacles by adopting a new LTS fire burn-area detection pipeline that (1) Automatically uniformized Landsat scenes by weighted histogram matching; (2) Estimated pixel resemblance to burn areas based on a random forest model trained on the number of days between the fire event and the date of burn-area detection; (3) Iteratively merged features created by thresholding burn-area resemblance to generate burn-area polygons with detection dates; and (4) Estimated the burn severity of burn-area pixels using a time-series compatible approach. When validated with government fire records, we found that the LTS fire product carried a low area of omission (11%) compared with existing burn-area products, such as GABAM (49%), MCD64A1 (72%), and FireCCI51 (96%) while effectively controlling commission errors. Temporally, the LTS fire pipeline dated 76.9% of burn-area polygons within two months of the actual fire event. The product represents the first Landsat-based burn-area product in wet tropical and subtropical Asia that covers the entire time series. We believe that burn-area products generated from algorithms like LTS fire will effectively bridge the gap between remote sensing and field-based studies on wet tropical and subtropical fire ecology.
Ash dieback (Hymenoscyphus fraxineus) is an introduced fungal disease that is causing the widespread death of ash trees across Europe. Remote sensing hyperspectral images encode rich structure that has been exploited for the detection of dieback disease in ash trees using supervised machine learning techniques. However, to understand the state of forest health at landscape-scale, accurate unsupervised approaches are needed. This article investigates the use of the unsupervised Diffusion and VCA-Assisted Image Segmentation (D-VIS) clustering algorithm for the detection of ash dieback disease in a forest site near Cambridge, United Kingdom. The unsupervised clustering presented in this work has high overlap with the supervised classification of previous work on this scene (overall accuracy = 71%). Thus, unsupervised learning may be used for the remote detection of ash dieback disease without the need for expert labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.