Recently, a variety of approaches has been enriching the field of Remote Sensing (RS) image processing and analysis. Unfortunately, existing methods remain limited faced to the rich spatio-spectral content of today's large datasets. It would seem intriguing to resort to Deep Learning (DL) based approaches at this stage with regards to their ability to offer accurate semantic interpretation of the data. However, the specificity introduced by the coexistence of spectral and spatial content in the RS datasets widens the scope of the challenges presented to adapt DL methods to these contexts. Therefore, the aim of this paper is firstly to explore the performance of DL architectures for the RS hyperspectral dataset classification and secondly to introduce a new three-dimensional DL approach that enables a joint spectral and spatial information process. A set of three-dimensional schemes is proposed and evaluated. Experimental results based on well known hyperspectral datasets demonstrate that the proposed method is able to achieve a better classification rate than state of the art methods with lower computational costs.
Indexing and classification tools for Content Based Visual Information Retrieval (CBVIR) have been penetrating the universe of medical image analysis. They have been recently investigated for Alzheimer's disease (AD) diagnosis. This is a normal "knowledge diffusion" process, when methodologies developed for multimedia mining penetrate a new application area. The latter brings its own specificities requiring an adjustment of methodologies on the basis of domain knowledge. In this paper, we develop an automatic classification framework for AD recognition in structural Magnetic Resonance Images (MRI). The main contribution of this work consists in considering visual features from the most involved *Data used in preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
Despite the existence of various biometric techniques, like fingerprints, iris scan, as well as hand geometry, the most efficient and more widely-used one is face recognition. This is because it is inexpensive, non-intrusive and natural. Therefore, researchers have developed dozens of face recognition techniques over the last few years. These techniques can generally be divided into three categories, based on the face data processing methodology. There are methods that use the entire face as input data for the proposed recognition system, methods that do not consider the whole face, but only some features or areas of the face and methods that use global and local face characteristics simultaneously. In this paper, we present an overview of some well-known methods in each of these categories. First, we expose the benefits of, as well as the challenges to the use of face recognition as a biometric tool. Then, we present a detailed survey of the well-known methods by expressing each method's principle. After that, a comparison between the three categories of face recognition techniques is provided. Furthermore, the databases used in face recognition are mentioned, and some results of the applications of these methods on face recognition databases are presented. Finally, we highlight some new promising research directions that have recently appeared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.