Color rendition, luminous efficacy and reliability are three key technical parameters for white light-emitting diodes (wLEDs) that are dominantly determined by down-conversion phosphors. However, there is usually an inevitable trade-off between color rendition and luminescence efficacy because the spectrum of red phosphor (that is, spectral broadness and position) cannot satisfy them simultaneously. In this work, we report a very promising red phosphor that can minimize the aforementioned trade-off via structure and band-gap engineering, achieved by introducing isostructural LiSi2N3 into CaAlSiN3:Eu2+. The solid solution phosphors show both substantial spectra broadening (88→117 nm) and blueshift (652→642 nm), along with a significant improvement in thermal quenching (only a 6% reduction at 150 °C), which are strongly associated with electronic and crystal structure evolutions. The broadband and robust red phosphor thus enables fabrication of super-high color rendering wLEDs (Ra=95 and R9=96) concurrently with the maintenance of a high-luminous efficacy (101 lm W−1), validating its superiority in high-performance solid state lightings over currently used red phosphors.
In this work, we first investigate
the relationship between temperature
and lattice parameters by means of Rietveld refinement and then demonstrate
its impact on the luminescence peak position of Eu2+ in
Sr8(Si4O12)Cl8. It is
found that with increases in temperature, lattice expansion takes
place without significant distortion of the coordination around Eu2+. As a result, the crystal field splitting of the Eu2+ 5d state decreases. At the same time, with the experimental
data of the full width at half-maximum of Eu2+ emission
at different temperatures and the infrared spectrum, the effective
phonon frequency is evaluated and the main vibration motions are determined
using first-principles calculation. Due to the high light yield under
X-ray excitation and the excellent thermal stability of luminescence
intensity and decay, a further optimized sample Sr7.7Eu0.3(Si4O12)Cl8 could be a
potential scintillation material.
Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed using a controllable method. Uniform truncated octahedral YF:Er/Yb microcrystals were prepared by a hydrothermal approach, and phase transformation from YF to YOF and YO with nearly unchanged morphology and size was successfully realized by controlling the annealing temperature. The phonon energies of blank matrixes were determined by FT-IR spectra and Raman scattering. Upon 980 nm excitation, phonon energy-dependent UC emitting color was finely tuned from green to yellow for three samples, and the mechanisms were proposed. Thermal sensing behaviors based on the TCLs (H/S) were evaluated, and the sensitivities gradually grew with the increase in the matrix's phonon energy. According to chemical bond theory and first-principle calculations, the most intrinsic factors associated with thermometric ability were qualitatively demonstrated through analyzing the inner relation between the phonon energy and bond covalency. The exciting results provide guiding insights into employing appropriate host materials with desired thermometric ability while offering the possibility of highly accurate measurement of temperature.
Development of a solar water splitting device requires design of a low-cost, efficient, and non-noble metal compound as alternative to noble metals. For the first time, we showed that CoSe2 can function as co-catalyst in phototoelectrochemical hydrogen production. We designed a heterostructure of p-Si and marcasite-type CoSe2 for solar-driven hydrogen production. CoSe2 successively coupled with p-Si can act as a superior photocathode in the solar-driven water splitting reaction. Photocurrents up to 9 mA cm(-2) were achieved at 0 V vs. reversible hydrogen electrode. Electrochemical impedance spectroscopy showed that the high photocurrents can be attributed to low charge transfer resistance between the Si and CoSe2 interfaces and that between the CoSe2 and electrolyte interfaces. Our results suggest that this CoSe2 is a promising alternative co-catalyst for hydrogen evolution.
Integrated cobalt disulfide (CoS2) co-catalyst passivation layer on Si microwires (MWs) were used as a photocathode for solar hydrogen evolution. Si MWs were prepared by photolithography and dry etching technique. The CoS2-Si photocathodes were subsequently prepared by chemical deposition and thermal sulfidation of the Co(OH)2 outer shell. The optimized onset potential and photocurrent of the CoS2-Si electrode were 0.248 V and −3.22 mA cm −2 (at 0 V), respectively. The best photocatalytic activity of the CoS2-Si electrode resulted from lower charge transfer resistances among the photoabsorber, co-catalyst, and redox couples in the electrolyte. X-ray absorption near edge structure was conducted to investigate the unoccupied electronic states of the CoS2 layer. We propose that more vacancies in the S-3p unoccupied states of the CoS2-Si electrode were present with a lower negative charge of S2 2to form weaker S-H bond strength, promoting water splitting efficiency. Moreover, the CoS2 co-catalyst that completely covered underlying Si MWs, was served as a passivation layer to prevent oxidation and reduce degradation during photoelectrochemical measurements. Therefore, the optimal CoS2-Si electrode maintained the photocurrent at about −3 mA cm −2 (at 0 V) for 9 h, and its hydrogen generation rate was approximately 0.833 μmol min −1 , respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.