To investigate the effect of polyurea on the protective performance of a steel target plate under the combination of shock wave and fragments, the failure characteristics, damage process and micro mechanism of the polyurea coated steel plates with different coating methods under the combination of explosion shock waves and fragments were analyzed through experiments and numerical simulations. The results showed that single-sided coatings aggravated the damage of target plate when the coating thickness was 2 mm. While the polyurea thickness greater than 4 mm could significantly reduce the damage degree of the steel plate. When the polyurea was coated on the double sides, it would aggravate the damage, no matter how thick the polyurea was. Through microscopic research, it was found that the front coated polyurea was severely ablated by detonation products, which greatly reduce its energy absorption efficiency. The polyurea coated on the back underwent tensile fracture under the influence of tensile stress wave. The breaking of intramolecular hydrogen bond of polyurea was the key to the energy absorption of polyurea.
The law of influenced material of liner is researched by numerical simulation.Multiple explosively formed projectiles (MEFP) forming process is numerically simulated with different liner material,such as copper, aluminum, iron and so on.The law that the formation parameters of MEFP such as velocity, length-diameter ratio and radial dispersion angle,influenced by the density and ductility of liner material is educed.It reaches the conclusion that the velocity and radial dispersion angle of projectiles decreases 58% and 56% with the increasing density of the liner material; the length-diameter ratio of central projectile increases276%with the increasing ductility of the liner material, so in order to acquire good formation of MEFP parameters, the appropriate density and higher ductility should be chosen.
A new MEFP warhead with seven arc-cone liners which can form 7,13 or 19 penetrators at different standoffs is designed. Dispersion patterns and penetration properties of MEFP are performed on five #45 steel targets of dimension 160cm x 160cm x 1.5cm at various standoffs (45cm, 60cm, 80cm, 120cm, 170cm). It reaches the conclusion that every surrounding liner is broken into three penetrators during the formation process of MEFP and a group of aimable penetrators consisting a central projectile surrounded by 18 penetrators is finally formed. Maximum divergence angle of surrounding penetrator is 9.8° and the damage area reaches 0.37m 2 at 1.7m. A nonlinear surface fitting about perforations information on the targets at different standoffs provides a method of predicting the dispersion patterns of MEFP. Once initiated, damage probability for defeating light armor of MEFP warhead with seven arc-cone liners is significantly improved and the results provide important reference to the design and optimization of MEFP warhead in engineering.
The dynamic deformation of the finite steel target subjected to high velocity impact of copper explosively formed projectile is investigated by optical, scanning, and transmission electron microscopy. Morphology analysis of fracture surfaces indicates that the copper remainder plated to the crater wall shows extremely plastic deformation, which consists of elongated parabolic dimples, and the mild carbon steel target exhibits excellent brittle features that material fails mainly along the cleavage facets on the rear surface of target under strong impact of explosively formed projectile. In the surface of crater, the whole part of copper remainder and partial material of steel target undergoes completely dynamic recrystallization. The layer thickness of dynamic recrystallization zone, which displays an extreme plastic flow in solid state, is about 21.3 μm in steel target, and the average size of the refined grains significantly decreases to approximately 200 nm. Theoretically calculated results indicate that the temperature increase is associated with shock wave and plastic deformation of steel target and can reach 1352 K, which is 0.75Tm (where Tm is the melting temperature of steel target). The change in microhardness from the crater wall to the matrix of target is consistent with micro‐deformation of grains, and maximum microhardness is observed on the interface between dynamic recrystallization and severe plastic deformation zones of steel target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.