Nanocomposite engineering decouples the transport of phonons and electrons. This usually involves the in-situ formation or ex-situ addition of nanoparticles to a material matrix with hetero-composition and hetero-structure (heC-heS) interfaces or hetero-composition and homo-structure (heC-hoS) interfaces. Herein, a quasi homo-composition and hetero-structure (hoC-heS) nanocomposite consisting of Pnma Bi2SeS2 - Pnnm Bi2SeS2 is obtained through a Br dopant-induced phase transition, providing a coherent interface between the Pnma matrix and Pnnm second phase due to the slight structural difference between the two phases. This hoC-heS nanocomposite demonstrates a significant reduction in lattice thermal conductivity (~0.40 W m−1 K−1) and an enhanced power factor (7.39 μW cm−1 K−2). Consequently, a record high figure-of-merit ZTmax = 1.12 (at 773 K) and a high average figure-of-merit ZTave = 0.72 (in the range of 323–773 K) are achieved. This work provides a general strategy for synergistically tuning electrical and thermal transport properties by designing hoC-heS nanocomposites through a dopant-induced phase transition.
The Te-free compound Bi2SeS2 is considered as a potential thermoelectric material with less environmentally hazardous composition. Herein, the effect of iodine (I) substitution on its thermoelectric transport properties was studied. The electrical conductivity was enhanced due to the increased carrier concentration caused by the carrier provided defect Ise. Thus, an enhanced power factor over 690 μWm−1K−2 was obtained at 300 K by combining a moderate Seebeck coefficient above 150 µV/K due to its large effective mass, which indicated iodine was an effective n-type dopant for Bi2SeS2. Furthermore, a large drop in the lattice thermal conductivity was observed due to the enhanced phonon scattering caused by nanoprecipitates, which resulted in a low total thermal conductivity (<0.95 Wm−1K−1) for all doped samples. Consequently, a maximum ZT value of 0.56 was achieved at 773 K for a Bi2Se1−xIxS2 (x = 1.1%) sample, a nearly threefold improvement compared to the undoped sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.