The present work aims at characterizing a metal matrix syntactic foam core sandwich composite under threepoint bending conditions. The sandwich comprises alumina hollow particle reinforced A356 alloy syntactic foam with carbon fabric skins. Crack initiation in the tensile side of the specimen causing failure of the skin, followed by rapid failure of the core in the direction applied load, is observed as the failure mechanism. Crack propagation through the alumina particles is observed in the failed specimens instead of interfacial failure. The average maximum strength, flexural strain and stiffness were measured as 91.2 ± 5.6 MPa, 0.49 ± 0.06% and 20.6 ± 0.7 GPa respectively. The collapse load is theoretically predicted using mechanics of sandwich beams. Experimental values show good agreement with theoretical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.