In the field of electrochemical energy storage systems, the use of in situ detection technology helps to study the mechanism of electrochemical reaction. Our group has previously in situ detected the electrochemical reaction in vanadium flow batteries by total internal reflection (TIR) imaging. In order to further improve the detection resolution, in this study, the weak measurement (WM) method was introduced to in situ detect the electrochemical reaction during the linear sweep voltammetry or the cyclic voltammetry tests with quantitative measurement of the absolute current density, which lays a foundation for replacing the TIR for two-dimensional imaging of electrochemical reactions in vanadium flow batteries, oxygen/hydrogen evolution reaction, surface treatments, electrochemical corrosion and so on.
Flow battery electrodes are vital for performing redox reactions, and an indepth understanding of reaction kinetics and spatial distribution differences in electrodes is very important for improving the efficiency of electrochemical reactions. In this study, a reflection-type phase-sensitive weak measurement imaging system was developed for the detection of flow batteries. The phase difference between two polarization components in total internal reflection caused by electrode redox processes was measured by weak value amplification. The resulting refractive index resolution of the imaging system was estimated to be 2.8−4.2 × 10 −6 RIU. The real-time monitoring ability of the system was demonstrated by linear sweep voltammetry tests of vanadium redox batteries. Compared to traditional optical methods, the proposed weak measurement imaging sensor did not require coating, as it can be used in acid electrolytes of vanadium flow batteries. Meanwhile, the weak value amplification effect led to a higher resolution than the total internal reflection system shown in our previous work, thereby resulting in more accurate detection of electrochemical reactions. In sum, the proposed sensor looks very promising for the detection of electrochemical reactions in flow batteries, water splitting, electrochemical corrosion, and electrocatalysis.
Diabetes is an important public health problem and finding quick testing methods with high accuracy, reliability, and convenience are important to control the blood glucose of diabetic patients. In this study, a sensor based on a weak measurement scheme was developed for the specific detection of glucose for the first time. The detection of glucose using the proposed method was completed by the high sensitivity and resolution of the weak measurement based on optical rotation detection, as well as the change in the optical rotation before and after the specific oxidation of glucose. The resolution of the as-obtained glucose sensor was around 2.71×10−3 g/L (1.50×10−2 mmol/L), and the detection range was 0–11 g/L (0–61 mmol/L).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.