Single image super resolution (SR), which refers to reconstruct a higher-resolution (HR) image from the observed low-resolution (LR) image, has received substantial attention due to its tremendous application potentials. Despite the breakthroughs of recently proposed SR methods using convolutional neural networks (CNNs), their generated results usually lack of preserving structural (high-frequency) details. In this paper, regarding global boundary context and residual context as complimentary information for enhancing structural details in image restoration, we develop a contextualized multi-task learning framework to address the SR problem. Specifically, our method first extracts convolutional features from the input LR image and applies one deconvolutional module to interpolate the LR feature maps in a content-adaptive way. Then, the resulting feature maps are fed into two branched sub-networks. During the neural network training, one sub-network outputs salient image boundaries and the HR image, and the other sub-network outputs the local residual map, i.e., the residual difference between the generated HR image and ground-truth image. On several standard benchmarks (i.e., Set5, Set14 and BSD200), our extensive evaluations demonstrate the effectiveness of our SR method on achieving both higher restoration quality and computational efficiency compared with several stateof-the-art SR approaches. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.