Projected changes in regional seasonal precipitation due to climate change are highly uncertain, with model disagreement on even the sign of change in many regions. Using a 20-member CMIP5 ensemble under the RCP8.5 scenario, the intermodel uncertainty of the spatial patterns of projected end-of-twenty-first-century change in precipitation is found not to be strongly influenced by uncertainty in global mean temperature change. In the tropics, both the ensemble mean and intermodel uncertainty of regional precipitation change are found to be predominantly related to spatial shifts in convection and convergence, associated with processes such as sea surface temperature (SST) pattern change and land-sea thermal contrast change. The authors hypothesize that the zonal-mean seasonal migration of these shifts is driven by 1) the nonlinear spatial response of convection to SST changes and 2) a general movement of convection from land to ocean in response to SST increases. Assessment of tropical precipitation model projections over East Africa highlights the complexity of regional rainfall changes. Thermodynamically driven moisture increases determine the magnitude of the long rains (March-May) ensemble mean precipitation change in this region, whereas model uncertainty in spatial shifts of convection accounts for almost all of the intermodel uncertainty. Moderate correlations are found across models between the long rains precipitation change and patterns of SST change in the Pacific and Indian Oceans. Further analysis of the capability of models to represent present-day SSTrainfall links, and any relationship with model projections, may contribute to constraining the uncertainty in projected East Africa long rains precipitation.
Climate change is a potential threat to achieving food security, particularly in the most food insecure regions. However, interpreting climate change projections to better understand the potential impacts of a changing climate on food security outcomes is challenging. This paper addresses this challenge through presenting a framework that enables rapid country-level assessment of vulnerability to food insecurity under a range of climate change and adaptation investment scenarios. The results show that vulnerability to food insecurity is projected to increase under all emissions scenarios, and the geographic distribution of vulnerability is similar to that of the present-day; parts of sub-Saharan Africa and South Asia are most severely affected. High levels of adaptation act to off-set these increases; however, only the scenario with the highest level of mitigation combined with high levels of adaptation shows improvements in vulnerability compared to the present-day. The results highlight the dual requirement for mitigation and adaptation to avoid the worst impacts of climate change and to make gains in tackling food insecurity. The approach is an update to the existing Hunger and Climate Vulnerability Index methodology to enable future projections, and the framework presented allows rapid updates to the results as and when new information becomes available, such as updated country-level yield data or climate model output. This approach provides a framework for assessing policy-relevant human food security outcomes for use in long-term climate change and food security planning; the results have been made available on an interactive website for policymakers (www.metoffice.gov.uk/food-insecurity-index).
The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world's maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions-a multi-breadbasket failure-is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.
The Northeast Farming Region (NFR) of China is a critically important area of maize cultivation accounting for ~30% of national production. It is predominantly rain fed, meaning that adverse climate conditions such as drought can significantly affect productivity. Forewarning of such events, to improve contingency planning, could therefore be highly beneficial to the agricultural sector. For this, an improved estimate of drought exposure, and the associated large-scale circulation patterns, is of critical importance. We address these important questions by employing a large ensemble of initialized climate model simulations. These simulations provide 80 times as many summers as the equivalent observational dataset and highlight several limitations of the recent observational record. For example, the chance of a drought greater in area than any current observed event is approximately 5% per year, suggesting the risk of a major drought is significantly underestimated if based solely on recent events. The combination of a weakened East Asian jet stream and intensified subpolar jet are found to be associated with severe NFR drought through enhanced upper-level convergence and anomalous descent, reducing moisture and suppressing precipitation. We identify a strong 500-hPa geopotential height anomaly dipole pattern as a useful metric to identify this mechanism for relevance to seasonal predictability. This work can inform policy planning and decision-making through an improved understanding of the near-term climate exposure and form the basis of new climate services.
Sudden stratospheric warmings (SSWs) are amongst the most dramatic events in the Earth’s atmosphere and they drive extreme surface weather conditions. They have been recently linked to the hot and dry weather conditions that favour wildfires over Australia. However, the chance of a southern hemisphere event is unknown because it has only been observed once. Legitimate estimation of the frequency of SSW events requires a large sample of realistic model simulations. Here we show that the chance of an event is close to 4% per year, implying that an event will occur, on average, every 25 yr, using a state-of-the-art model that simulates SSWs accurately. It is thus not surprising that there was a near miss in the September prior to the Australian wildfire of 2019, given the 40 yr of comprehensive satellite records and just one observed Antarctic event. According to this new estimate, it would also not be surprising to see a second SSW event in the coming years in the southern hemisphere. Such a stratospheric warming event might bring further extreme surface weather conditions and natural hazards, as it may raise the risk of increased rainfall in the latitudinal band of 35–50°S. Meanwhile, the associated hot and dry weather conditions over austral subtropical continents might increase the risk of wildfires over these regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.