We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity.This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.
Climate change is a potential threat to achieving food security, particularly in the most food insecure regions. However, interpreting climate change projections to better understand the potential impacts of a changing climate on food security outcomes is challenging. This paper addresses this challenge through presenting a framework that enables rapid country-level assessment of vulnerability to food insecurity under a range of climate change and adaptation investment scenarios. The results show that vulnerability to food insecurity is projected to increase under all emissions scenarios, and the geographic distribution of vulnerability is similar to that of the present-day; parts of sub-Saharan Africa and South Asia are most severely affected. High levels of adaptation act to off-set these increases; however, only the scenario with the highest level of mitigation combined with high levels of adaptation shows improvements in vulnerability compared to the present-day. The results highlight the dual requirement for mitigation and adaptation to avoid the worst impacts of climate change and to make gains in tackling food insecurity. The approach is an update to the existing Hunger and Climate Vulnerability Index methodology to enable future projections, and the framework presented allows rapid updates to the results as and when new information becomes available, such as updated country-level yield data or climate model output. This approach provides a framework for assessing policy-relevant human food security outcomes for use in long-term climate change and food security planning; the results have been made available on an interactive website for policymakers (www.metoffice.gov.uk/food-insecurity-index).
The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world's maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions-a multi-breadbasket failure-is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.
Despite large increases in national cereal production in recent decades, Ethiopia continues to experience regular acute food insecurity crises, often associated with drought events. However, the meteorology of these events is poorly defined and local populations frequently experience food insecurity crises in years when national rainfall and cereal production totals are high. Therefore, looking at national, or even to some extent sub-national, rainfall variability is a misappropriation of climate as a causal factor in food insecurity in Ethiopia. The distinction between 'drought' as catch-all driver of food insecurity and a more nuanced view of the relationship between rainfall variability and food security is necessary both for addressing food insecurity now and for interpreting long-term climate model projections. The on-going recurrence of acute food insecurity is a feature of the heterogeneity of climate and climate variability in Ethiopia, but only in the context of a food system dominated by smallholder farming and climatesensitive livelihoods. Climate variability has the greatest adverse impact in the most marginal livelihood zones in the drier east of the country. Increasing the resilience of smallholder farmers and pastoralists to climate variability and improvements in early warning and disaster risk response could reduce the frequency and severity of food security crises. However, unless the food system in Ethiopia undergoes transformational adaptation, food insecurity crises will continue to occur, and the opportunity to achieve zero hunger by 2030 will be missed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.