We investigate the effect of three important processes by which AGN-blown bubbles transport material: drift, wake transport and entrainment. The first of these, drift, occurs because a buoyant bubble pushes aside the adjacent material, giving rise to a net upward displacement of the fluid behind the bubble. For a spherical bubble, the mass of upwardly displaced material is roughly equal to half the mass displaced by the bubble, and should be ~ 10^{7-9} solar masses depending on the local ICM and bubble parameters. We show that in classical cool core clusters, the upward displacement by drift may be a key process in explaining the presence of filaments behind bubbles. A bubble also carries a parcel of material in a region at its rear, known as the wake. The mass of the wake is comparable to the drift mass and increases the average density of the bubble, trapping it closer to the cluster centre and reducing the amount of heating it can do during its ascent. Moreover, material dropping out of the wake will also contribute to the trailing filaments. Mass transport by the bubble wake can effectively prevent the build-up of cool material in the central galaxy, even if AGN heating does not balance ICM cooling. Finally, we consider entrainment, the process by which ambient material is incorporated into the bubble. AbridgedComment: Accepted for publication in MNRAS. 17 pages, 4 figures, 2 tables. Formatted for letter paper and adjusted author affiliations
The buoyant rise of hot plasma bubbles inflated by AGN outflows in galaxy clusters can heat the cluster gas and thereby compensate radiative energy losses of this material. Numerical simulations of this effect often show the complete disruption of the bubbles followed by the mixing of the bubble material with the surrounding cluster gas due to fluid instabilities on the bubble surface. This prediction is inconsistent with the observations of apparently coherent bubble structures in clusters. We derive a general description in the linear regime of the growth of instabilities on the surface between two fluids under the influence of a gravitational field, viscosity, surface tension provided by a magnetic field and relative motion of the two fluids with respect to each other. We demonstrate that Kelvin-Helmholtz instabilities are always suppressed, if the fluids are viscous. They are also suppressed in the inviscid case for fluids of very different mass densities. We show that the effects of shear viscosity as well as a magnetic fields in the cluster gas can prevent the growth of Rayleigh-Taylor instabilities on relevant scale lengths. R-T instabilities on pc-scales are suppressed even if the kinematic viscosity of the cluster gas is reduced by two orders of magnitude compared to the value given by Spitzer for a fully ionised, unmagnetised gas. Similarly, magnetic fields exceeding a few microG result in an effective surface tension preventing the disruption of bubbles. For more massive clusters, instabilities on the bubble surface grow faster. This may explain the absence of thermal gas in the north-west bubble observed in the Perseus cluster compared to the apparently more disrupted bubbles in the Virgo cluster.Comment: 12 pages, 5 figures, accepted by MNRA
The impacts of winter weather on transport networks have been highlighted by various high-profile disruptions to road, rail, and air transport in the United Kingdom during recent winters. Recent advances in the predictability of the winter North Atlantic Oscillation (NAO) at seasonal time scales, using the Met Office Global Seasonal forecasting system, version 5 (GloSea5), present a timely opportunity for assessing the long-range predictability of a variety of winter-weather impacts on transport. This study examines the relationships between the observed and forecast NAO and a variety of U.K. winter impacts on transport in the road, rail, and aviation sectors. The results of this preliminary study show statistically significant relationships between both observed and forecast NAO index and quantities such as road-accident numbers in certain weather conditions, weather-related delays to flights leaving London Heathrow Airport, and weather-related incidents on the railway network. This supports the feasibility of the onward goal of this work, which is to investigate prototype seasonal forecasts of the relative risk of occurrence of particular impacts in a given winter for the United Kingdom, at lead times of 1–3 months. In addition, subject to the availability of relevant impacts data, there is scope for further work to make similar assessments for other parts of Europe and North America where the NAO has a strong effect on winter climate.
The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world's maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions-a multi-breadbasket failure-is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.