The development of mobile applications for the diagnosis and management of pregnant women with pre-eclampsia is described. These applications are designed for use by community-based health care providers (c-HCPs) in health facilities and during home visits to collect symptoms and perform clinical measurements (including pulse oximeter readings). The clinical data collected in women with pre-eclampsia are used as the inputs to a predictive model providing a risk score for the development of adverse outcomes. Based on this risk, the applications provide recommendations on treatment, referral, and reassessment. c-HCPs can access patient records across multiple visits, using multiple devices that are synchronized using a secure Research Electronic Data Capture server. A unique feature of these applications is the ability to measure oxygen saturation with a pulse oximeter connected to a smartphone (Phone Oximeter). The mobile health application development process, including challenges encountered and solutions are described.
For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultrahigh vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several µm. These probes are installed in scanningelectron-microscopy/electron-diffraction chambers, in which the structures of sample surfaces and probe positions are observed in situ. The probes can be positioned precisely on aimed areas on the sample with the aid of piezoactuators. By the use of these machines, the surface sensitivity in conductivity measurements has been greatly enhanced compared with the macroscopic four-point probe method. Then the conduction through the topmost atomic layers (surface-state conductivity) and the influence of atomic steps on conductivity can be directly measured.
Optical coherence tomography (OCT) is an emerging medical imaging technology that can generate high resolution, cross-sectional images of tissue in situ and in real time. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10-15 microm for in vivo studies. In this study, in vivo imaging of the rabbit gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 microm), using a broadband Cr(4+):Forsterite laser as the optical light source. Images acquired from the esophagus, trachea, and colon reveal high resolution details of tissue architecture. Definitive correlation of architectural features in OCT images and histological sections is shown. The ability of ultrahigh resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo advances the development of OCT as a potential imaging tool for the early detection of neoplastic changes in biological tissue.
This paper describes the design of a robust proportional-integral derivative (PID) controller for propofol infusion in children and presents the results of clinical evaluation of this closed-loop system during endoscopic investigations in children age 6-17. The controller design is based on a set of models that describes the interpatient variability in the response to propofol infusion in the study population. The PID controller is tuned to achieve sufficient robustness margins for the identified uncertainty. 108 children were enrolled in this study, and anesthesia was closed-loop controlled in 102 of these cases. Clinical evaluation of the system shows that closed-loop control of both induction and maintenance of anesthesia in children based on the WAV CNS index as a measure of clinical effect is feasible. A robustly tuned PID controller can accommodate the interpatient variability in children and spontaneous breathing can be maintained in most subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.