Photonic processors are pivotal for both quantum and classical information processing tasks using light. In particular, linear optical quantum information processing requires both large-scale and low-loss programmable photonic processors. In this paper, we report the demonstration of the largest universal quantum photonic processor to date: a low-loss 12-mode fully tunable linear interferometer with all-to-all mode coupling based on stoichiometric silicon nitride waveguides.
The synchronization of coherent states of light has long been an important subject of basic research and technology. Recently, a new concept for analog computers has emerged where this synchronization process can be exploited to solve computationally hard problems - potentially faster and more energy-efficient than what can be achieved with conventional computer technology today. The unit cell of such systems consists of two coherent centers that are coupled to one another in a controlled manner. Here, we experimentally characterize and analyze the synchronization process of two photon Bose-Einstein condensates, which are coupled to one another, either dispersively or dissipatively. We show that both types of coupling are robust against a detuning of the condensate frequencies and show similar time constants in establishing mutual coherence. Significant differences between these couplings arise in the behaviour of the condensate populations under imbalanced optical pumping. The combination of these two types of coupling extends the class of physical models that can be investigated using analog simulations.
Open quantum systems can be systematically controlled by making changes to their environment. A well-known example is the spontaneous radiative decay of an electronically excited emitter, such as an atom or a molecule, which is significantly influenced by the feedback from the emitter’s environment, for example, by the presence of reflecting surfaces. A prerequisite for a deliberate control of an open quantum system is to reveal the physical mechanisms that determine its state. Here, we investigate the Bose-Einstein condensation of a photonic Bose gas in an environment with controlled dissipation and feedback. Our measurements offer a highly systematic picture of Bose-Einstein condensation under non-equilibrium conditions. We show that by adjusting their frequency Bose-Einstein condensates naturally try to avoid particle loss and destructive interference in their environment. In this way our experiments reveal physical mechanisms involved in the formation of a Bose-Einstein condensate, which typically remain hidden when the system is close to thermal equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.