In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements-time and spatial resolutions, etc-will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements.The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required.The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all the plasma parameters needed to support the basic and advanced operation (including active control) of the device, machine protection and also those needed to support the physics programme. Once the requirements are defined, the appropriate (combination of) diagnostic techniques can be selected and their implementation onto the tokamak can be developed. The selected list of diagnostics is an important guideline for identifying dedicated research and development needs in the area of ITER diagnostics.This paper gives a comprehensive overview of recent progress in the field of ITER diagnostics with emphasis on the implementation issues. After a discussion of the measurement requirements for plasma parameters in ITER and their justifications, recent progress in the field of diagnostics to measure a selected set of plasma parameters is presented. The integration of the various diagnostic systems onto the ITER tokamak is described. Generic research and development in the field of irradiation effects on materials and environmental effects on first mirrors are briefly presented. The paper ends with an assessment of the measurement capability for ITER and a forward of what will be gained from operation of the various diagnostic systems on ITER in preparation for the machines that will follow ITER. Performance assessment relative to requirements Design meets requirements S339 A.J.H. Donné et alPhysics Basis [7] and remains essentially the same. However, for ITER, the specific limits have changed. 2.1.2.Measurements needed for plasma control and evaluation. The measurements needed for plasma control and evaluation are naturally directly linked to the experimental programme, and particularly to the operating phase (i.e. H, D or D/T) and the operating scenario (H-mode, hybrid, etc). Since there is expected to be a phased introduction of po...
Fusion product measurements planned for ITER are reviewed from the viewpoint of alpha particle-related physics studies. Recent advances in fusion plasma physics have extended the desirable measurement requirements to the megahertz region for neutron emission rate, better resolution of neutron profiles for the study of internal transport barriers (ITBs), etc. Employing threshold counters and/or scintillation detectors confers megahertz capability on neutron emission rate measurement. The changes in the neutron/alpha particle birth profile due to the formation of ITB and its deviation from uniformity on the magnetic flux surface can be measured by addition of eight viewing chords in an equatorial port plug and seven viewing chords from the divertor to the original radial neutron camera. On the other hand, it is still difficult to measure the distributions of confined and escaping alpha particles. Several proposals to resolve these difficulties are currently under investigation.
Reflectometry with wavelengths in the centimetre to millimetre-wave range will be used in ITER to measure the density profile in the main plasma and divertor regions and to measure the plasma position and shape in order to provide a reference for the magnetic diagnostics in long pulses. In addition, it is expected to provide key information for the measurement of density fluctuations. A set of reflectometers to meet the relevant ITER measurement requirements has been included in its present outline as part of the ITER design since 2001 and is being adapted to the present ITER baseline and to accommodate progress with reflectometry techniques and measurement capabilities. It comprises low and high field side (HFS and LFS, respectively) ordinary (O-) mode systems for the measurement of the density profile in the gradient regions, a LFS extraordinary (X-) mode system for the detailed study of the edge profile, an HFS X-mode system operating in the left hand cutoff to measure the core profile, a dedicated O-mode system for plasma-wall gap measurement and a multi-band, multiple line of sight O-mode system to measure divertor density profiles. This paper describes the evolution of the design, in particular some recent improvements in the engineering implementation and improvements aimed at enhancing the measurement capability. It concludes with a brief assessment of the likely measurement performance against the ITER measurement requirements for the parameters of interest and the overall confidence that the technique will be implanted on ITER.
The physics feasibility study [H. Bindslev et al., ITER Report Contract No. EFDA 01.654, 2003, www.risoe.dk/euratom/CTS/ITER] concludes that the frequency option below the electron cyclotron resonance was the only system capable of meeting the International Thermonuclear Experimental Reactor (ITER) measurement requirements for the fusion alphas, with present or near term technology. This article presents the design of the collective Thomson scattering diagnostic for ITER at the 60 GHz range. The system is capable of measuring the fast ion distribution parallel and perpendicular to the magnetic field at different radial locations simultaneously. The design is robust technologically with no moveable components near the plasma. The article includes the upgrade requirements to provide temporally and spatially resolved measurements of the fuel ion ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.