Variations in human behavior correspond to the adaptation of the nervous system to different internal and environmental demands. Attention, a cognitive process for weighing environmental demands, changes over time. Pupillary activity, which is affected by fluctuating levels of cognitive processing, appears to identify neural dynamics that relate to different states of attention. In mice, for example, pupil dynamics directly correlate with brain state fluctuations. Although, in humans, alpha-band activity is associated with inhibitory processes in cortical networks during visual processing, and its amplitude is modulated by attention, conclusive evidence linking this narrowband activity to pupil changes in time remains sparse. We hypothesize that, as alpha activity and pupil diameter indicate attentional variations over time, these two measures should be comodulated. In this work, we recorded the electroencephalographic (EEG) and pupillary activity of 16 human subjects who had their eyes fixed on a gray screen for 1 min. Our study revealed that the alpha-band amplitude and the high-frequency component of the pupil diameter covariate spontaneously. Specifically, the maximum alpha-band amplitude was observed to occur ∼300 ms before the peak of the pupil diameter. In contrast, the minimum alpha-band amplitude was noted to occur ∼350 ms before the trough of the pupil diameter. The consistent temporal coincidence of these two measurements strongly suggests that the subject’s state of attention, as indicated by the EEG alpha amplitude, is changing moment to moment and can be monitored by measuring EEG together with the diameter pupil.
In this article, a new approach to offline signature verification, based on a general-purpose wide baseline matching methodology, is proposed. Instead of detecting and matching geometric, signature-dependent features, as it is usually done, in the proposed approach local interest points are detected in the signature images, then local descriptors are computed in the neighborhood of these points, and afterwards these descriptors are compared using local and global matching procedures. The final verification is carried out using a Bayes classifier. It is important to remark that the local interest points do not correspond to any signaturedependent fiducial point, but to local maxima in a scale-space representation of the signature images. The proposed system is validated using the GPDS signature database, where it achieves a FRR of 16.4% and a FAR of 14.2%.
In schizophrenia, patients display dysfunctions during the execution of simple visual tasks such as antisaccade or smooth pursuit. In more ecological scenarios, such as free viewing of natural images, patients appear to make fewer and longer visual fixations and display shorter scanpaths. It is not clear whether these measurements reflect alterations in their proficiency to perform basic eye movements, such as saccades and fixations, or are related to high-level mechanisms, such as exploration or attention. We utilized free exploration of natural images of different complexities as a model of an ecological context where normally operative mechanisms of visual control can be accurately measured. We quantified visual exploration as Euclidean distance, scanpaths, saccades, and visual fixation, using the standard SR-Research eye tracker algorithm (SR). We then compared this result with a computation that includes microsaccades (EM). We evaluated eight schizophrenia patients and corresponding healthy controls (HC). Next, we tested whether the decrement in the number of saccades and fixations, as well as their increment in duration reported previously in schizophrenia patients, resulted from the increasing occurrence of undetected microsaccades. We found that when utilizing the standard SR algorithm, patients displayed shorter scanpaths as well as fewer and shorter saccades and fixations. When we employed the EM algorithm, the differences in these parameters between patients and HC were no longer significant. On the other hand, we found that image complexity plays an important role in exploratory behaviors, demonstrating that this factor explains most of differences between eye-movement behaviors in schizophrenia patients. These results help elucidate the mechanisms of visual motor control that are affected in schizophrenia and contribute to the finding of adequate markers for diagnosis and treatment for this condition.
Bi-stable perception is a strong instance of cognitive self-organization, providing a research model for how ‘the brain makes up its mind.’ The complexity of perceptual bistability prevents a simple attribution of functions to areas, because many cognitive processes, recruiting multiple brain regions, are simultaneously involved. The functional magnetic resonance imaging (fMRI) evidence suggests the activation of a large network of distant brain areas. Concurrently, electroencephalographic and magnetoencephalographic (MEEG) literature shows sub second oscillatory activity and phase synchrony on several frequency bands. Strongly represented are beta and gamma bands, often associated with neural/cognitive integration processes. The spatial extension and short duration of brain activities suggests the need for a fast, large-scale neural coordination mechanism. To address the range of temporo-spatial scales involved, we systematize the current knowledge from mathematical models, cognitive sciences and neuroscience at large, from single-cell- to system-level research, including evidence from human and non-human primates. Surprisingly, despite evidence spanning through different organization levels, models, and experimental approaches, the scarcity of integrative studies is evident. In a final section of the review we dwell on the reasons behind such scarcity and on the need of integration in order to achieve a real understanding of the complexities underlying bi-stable perception processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.