Sensory-motor relationships are part of the normal operation of sensory systems. Sensing occurs in the context of active sensor movement, which in turn influences sensory processing. We address such a process in the rat olfactory system. Through recordings of the diaphragm electromyogram (EMG), we monitored the motor output of the respiratory circuit involved in sniffing behavior, simultaneously with the local field potential (LFP) of the olfactory bulb (OB) in rats moving freely in a familiar environment, where they display a wide range of respiratory frequencies. We show that the OB LFP represents the sniff cycle with high reliability at every sniff frequency and can therefore be used to study the neural representation of motor drive in a sensory cortex.
BackgroundPostoperative delirium (PD) and subsyndromal delirium (PSSD) are frequent complications in older patients associated with poor long-term outcome. It has been suggested that certain electroencephalogram features may be capable of identifying patients at risk during surgery. Thus, the goal of this study was to characterize intraoperative electroencephalographic markers to identify patients prone to develop PD or PSSD.MethodsWe conducted an exploratory observational study in older patients scheduled for elective major abdominal surgery. Intraoperative 16 channels electroencephalogram was recorded, and PD/PSSD were diagnosed after surgery with the confusion assessment method (CAM). The total power spectra and relative power of alpha band were calculated.ResultsPD was diagnosed in 2 patients (6.7%), and 11 patients (36.7%) developed PSSD. All of them (13 patients, PD/PSSD group) were compared with patients without any alterations in CAM (17 patients, control group). There were no detectable power spectrum differences before anesthesia between both groups of patients. However, PD/PSSD group in comparison with control group had a lower intraoperative absolute alpha power during anesthesia (4.4 ± 3.8 dB vs. 9.6 ± 3.2 dB, p = 0.0004) and a lower relative alpha power (0.09 ± 0.06 vs. 0.21 ± 0.08, p < 0.0001). These differences were independent of the anesthetic dose. Finally, relative alpha power had a good ability to identify patients with CAM alterations in the ROC analysis (area under the curve 0.90 (CI 0.78-1), p < 0.001).DiscussionIn conclusion, a low intraoperative alpha power is a novel electroencephalogram marker to identify patients who will develop alterations in CAM – i.e., with PD or PSSD – after surgery.
Variations in human behavior correspond to the adaptation of the nervous system to different internal and environmental demands. Attention, a cognitive process for weighing environmental demands, changes over time. Pupillary activity, which is affected by fluctuating levels of cognitive processing, appears to identify neural dynamics that relate to different states of attention. In mice, for example, pupil dynamics directly correlate with brain state fluctuations. Although, in humans, alpha-band activity is associated with inhibitory processes in cortical networks during visual processing, and its amplitude is modulated by attention, conclusive evidence linking this narrowband activity to pupil changes in time remains sparse. We hypothesize that, as alpha activity and pupil diameter indicate attentional variations over time, these two measures should be comodulated. In this work, we recorded the electroencephalographic (EEG) and pupillary activity of 16 human subjects who had their eyes fixed on a gray screen for 1 min. Our study revealed that the alpha-band amplitude and the high-frequency component of the pupil diameter covariate spontaneously. Specifically, the maximum alpha-band amplitude was observed to occur ∼300 ms before the peak of the pupil diameter. In contrast, the minimum alpha-band amplitude was noted to occur ∼350 ms before the trough of the pupil diameter. The consistent temporal coincidence of these two measurements strongly suggests that the subject’s state of attention, as indicated by the EEG alpha amplitude, is changing moment to moment and can be monitored by measuring EEG together with the diameter pupil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.