Juveniles and adults (>100 mm) of Liza ramada colonize macrotidal salt marsh creeks of Mont Saint-Michel bay (France) between March and November, during spring tide floods (43% of the tides) and return to coastal waters during the ebb. This fish species actively feeds during its short stay in the creek (from 1 to 2 h). On average, each fish swallows sediment including living and inert organic matter, which amounts to 8% of its fresh body weight. Their diet is dominated by small benthic items (especially diatoms and salt marsh plant detritus), that correspond to the primary and detritic production of this macrotidal salt marsh creek. Despite very short submersion periods, mullets filter and ingest large quantities of sediment and concentrated organic matter (on average organic matter in stomach content is 31%) produced by these coastal wetlands. European salt marshes are thus shown to act as trophic areas for mullets, which are well adapted to this constraining habitat which is only flooded for short periods during spring tides.
We have studied the morphology of self-assembled micelles made of linear and cyclic poly(styrene-b-isoprene) PS-b-PI block copolymers dispersed in selective solvents of the PI block (n-heptane, n-decane). Up to a copolymer concentration of 5 mg mL(-1), the micelles made from linear block copolymer chains adopt a spherical shape. Those arising from cyclic copolymer chains having exactly the same molar mass and volume fraction self-assemble into (i) planar sunflower-shaped particles at low concentration (c < 0.1 mg mL(-1)), (ii) giant wormlike micelles at intermediate concentration (0.1 mg mL(-1) < c < 2 mg mL(-1)) and (iii) vesicles at higher concentration (2 mg mL(-1) < c < 5 mg mL(-1)). Those results were obtained using dynamic light scattering and in situ freeze-drying cryo-transmission electron microscopy. In this contribution, we discuss the effects of concentration and temperature on the morphology of the self-assembled particles made from both linear and cyclic PS-PI copolymers, and highlight the surprising vesicle formation in cyclic block copolymer solutions.
External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.