One of the greatest challenges associated with efficient energy use in unmanned aerial vehicles (drones) is that of the energy storage systems – more specifically it's weight and capacity. Current hydrogen fuel cell drones have very promising flight durations, but have a low power density thus performing poorly at peak power demands. Supercapacitors are known to have high power densities and respond significantly well to peak power demands. For this research it is desired to evaluate how supercapacitors can affect the operation of an existing hydrogen fuel cell system, when combined. This study will include the evaluation of the viability of a DC-DC converter used to reduce the size (and subsequently, weight) of a supercapacitor bank. It also evaluates whether specified switching of the sources has an effect. Using data generated from the experiment it was determined that the DC-DC converter (with efficiency >94%) reduced the efficiency (by 0.5%) and duration (by 3.8%) of the supercapacitor bank whilst increasing the weight (by 16.7%). It was also seen that the method of selective switching offered no benefit over that of a self-selecting system, where the former obtained 223 s of usability and the latter 365 s. However, comparing all the results it was observed that the addition of a supercapacitor bank allowed for an improvement in energy- and power density, of the hydrogen fuel cell system, from 0.65 Wh/kg to 1.19 Wh/kg and from 69.7 W/kg to 125.7 W/kg, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.