This study explored the possibility of utilizing iron oxide nanoparticles as a drug delivery vehicle for minimally invasive, MRI-monitored magnetic targeting of brain tumors. In vitro determined hydrodynamic diameter of ~100nm, saturation magnetization of 94 emu/g Fe and T 2 relaxivity of 43 s −1 mM −1 of the nanoparticles suggested their applicability for this purpose. In vivo effect of magnetic targeting on the extent and selectivity of nanoparticle accumulation in tumors of rats harboring orthotopic 9L-gliosarcomas was quantified with MRI. Animals were intravenously injected with nanoparticles (12 mg Fe/kg) under a magnetic field density of 0 T (control) or 0.4 T (experimental) applied for 30 minutes. MR images were acquired prior to administration of nanoparticles and immediately after magnetic targeting at 1 hour intervals for 4 hours. Image analysis revealed that magnetic targeting induced a 5-fold increase in the total glioma exposure to magnetic nanoparticles over non-targeted tumors (p=0.005) and a 3.6-fold enhancement in the target selectivity index of nanoparticle accumulation in glioma over the normal brain (p=0.025). In conclusion, accumulation of iron oxide nanoparticles in gliosarcomas can be significantly enhanced by magnetic targeting and successfully quantified by MR imaging. Hence, these nanoparticles appear to be a promising vehicle for glioma-targeted drug delivery.
The inhalation of medical aerosols is widely used for the treatment of lung disorders such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, respiratory infection and, more recently, lung cancer. Targeted aerosol delivery to the affected lung tissue may improve therapeutic efficiency and minimize unwanted side effects. Despite enormous progress in optimizing aerosol delivery to the lung, targeted aerosol delivery to specific lung regions other than the airways or the lung periphery has not been adequately achieved to date. Here, we show theoretically by computer-aided simulation, and for the first time experimentally in mice, that targeted aerosol delivery to the lung can be achieved with aerosol droplets comprising superparamagnetic iron oxide nanoparticles--so-called nanomagnetosols--in combination with a target-directed magnetic gradient field. We suggest that nanomagnetosols may be useful for treating localized lung disease, by targeting foci of bacterial infection or tumour nodules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.