No abstract
The gallium gradient in Cu(In,Ga)Se2 (CIGS) layers, which forms during the two industrially relevant deposition routes, the sequential and co‐evaporation processes, plays a key role in the device performance of CIGS thin‐film modules. In this contribution, we present a comprehensive study on the formation, nature, and consequences of gallium gradients in CIGS solar cells. The formation of gallium gradients is analyzed in real time during a rapid selenization process by in situ X‐ray measurements. In addition, the gallium grading of a CIGS layer grown with an in‐line co‐evaporation process is analyzed by means of depth profiling with mass spectrometry. This gallium gradient of a real solar cell served as input data for device simulations. Depth‐dependent occurrence of lateral inhomogeneities on the µm scale in CIGS deposited by the co‐evaporation process was investigated by highly spatially resolved luminescence measurements on etched CIGS samples, which revealed a dependence of the optical bandgap, the quasi‐Fermi level splitting, transition levels, and the vertical gallium gradient. Transmission electron microscopy analyses of CIGS cross‐sections point to a difference in gallium content in the near surface region of neighboring grains. Migration barriers for a copper‐vacancy‐mediated indium and gallium diffusion in CuInSe2 and CuGaSe2 were calculated using density functional theory. The migration barrier for the InCu antisite in CuGaSe2 is significantly lower compared with the GaCu antisite in CuInSe2, which is in accordance with the experimentally observed Ga gradients in CIGS layers grown by co‐evaporation and selenization processes. Copyright © 2014 John Wiley & Sons, Ltd.
In this work, we demonstrate the applicability of conducting atomic force microscopy (AFM) for the quantitative electrical characterization of thin (3–40 nm) SiO2 films on a nanometer scale length. Fowler–Nordheim (F–N) tunneling currents on the order of 0.02–1 pA are measured simultaneously with the oxide surface topography by applying a voltage between the AFM tip and the silicon substrate. Current variations in the F–N current images are correlated to local variations of the oxide thickness on the order of several angströms to nanometers. From the microscopic current–voltage characteristics the local oxide thickness can be obtained with an accuracy of ±0.3 nm. Local oxide thinning of up to 3.3 nm was found at the edge between gate oxide and field oxide of a metal-oxide-semiconductor capacitor with a 20-nm-thick gate oxide.
No abstract
Abstract. As intended by its name, Physically Unclonable Functions (PUFs) are considered as an ultimate solution to deal with insecure storage, hardware counterfeiting, and many other security problems. However, many different successful attacks have already revealed vulnerabilities of certain digital intrinsic PUFs. Although settling-state-based PUFs, such as SRAM PUFs, can be physically cloned by semi-invasive and fully-invasive attacks, successful attacks on timing-based PUFs were so far limited to modeling attacks. Such modeling requires a large subset of challenge-response-pairs (CRP) to successfully model the targeted PUF. In order to provide a final security answer, this paper proves that all arbiter-based (i.e. controlled and XOR-enhanced) PUFs can be completely and linearly characterized by means of photonic emission analysis. Our experimental setup is capable of measuring every PUF-internal delay with a resolution of 6 picoseconds. Due to this resolution we indeed require only the theoretical minimum number of linear independent equations (i.e. physical measurements) to directly solve the underlying inhomogeneous linear system. Moreover, we neither require to know the actual PUF challenges nor the corresponding PUF responses for our physical delay extraction. On top of that devastating result, we are also able to further simplify our setup for easier physical measurement handling. We present our practical results for a real arbiter PUF implementation on a Complex Programmable Logic Device (CPLD) from Altera manufactured in a 180 nanometer process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.