No abstract
No abstract
Abstract. As intended by its name, Physically Unclonable Functions (PUFs) are considered as an ultimate solution to deal with insecure storage, hardware counterfeiting, and many other security problems. However, many different successful attacks have already revealed vulnerabilities of certain digital intrinsic PUFs. Although settling-state-based PUFs, such as SRAM PUFs, can be physically cloned by semi-invasive and fully-invasive attacks, successful attacks on timing-based PUFs were so far limited to modeling attacks. Such modeling requires a large subset of challenge-response-pairs (CRP) to successfully model the targeted PUF. In order to provide a final security answer, this paper proves that all arbiter-based (i.e. controlled and XOR-enhanced) PUFs can be completely and linearly characterized by means of photonic emission analysis. Our experimental setup is capable of measuring every PUF-internal delay with a resolution of 6 picoseconds. Due to this resolution we indeed require only the theoretical minimum number of linear independent equations (i.e. physical measurements) to directly solve the underlying inhomogeneous linear system. Moreover, we neither require to know the actual PUF challenges nor the corresponding PUF responses for our physical delay extraction. On top of that devastating result, we are also able to further simplify our setup for easier physical measurement handling. We present our practical results for a real arbiter PUF implementation on a Complex Programmable Logic Device (CPLD) from Altera manufactured in a 180 nanometer process.
This work presents a novel low-cost optoelectronic setup for time-and spatially resolved analysis of photonic emissions and a corresponding methodology, Simple Photonic Emission Analysis (SPEA). Observing the backside of ICs, the system captures extremly weak photoemissions from switching transistors and relates them to program running in the chip. SPEA utilizes both spatial and temporal information about these emissions to perform side channel analysis of ICs. We successfully performed SPEA of a proof-of-concept AES implementation and were able to recover the full AES secret key by monitoring accesses to the S-Box. This attack directly exploits the side channel leakage of a single transistor and requires no additional data processing. The system costs and the necessary time for an attack are comparable to power analysis techniques. The presented approach significantly reduces the amount of effort required to perform attacks based on photonic emission analysis and allows AES key recovery in a relevant amount of time.
As the surplus market of failure analysis equipment continues to grow, the cost of performing invasive IC analysis continues to diminish. Hardware vendors in high-security applications utilize security by obscurity to implement layers of protection on their devices. High-security applications must assume that the attacker is skillful, well-equipped and wellfunded. Modern security ICs are designed to make readout of decrypted data and changes to security configuration of the device impossible. Countermeasures such as meshes and attack sensors thwart many state of the art attacks. Because of the perceived difficulty and lack of publicly known attacks, the IC backside has largely been ignored by the security community. However, the backside is currently the weakest link in modern ICs because no devices currently on the market are protected against fully-invasive attacks through the IC backside. Fully-invasive backside attacks circumvent all known countermeasures utilized by modern implementations. In this work, we demonstrate the first two practical fully-invasive attacks against the IC backside. Our first attack is fully-invasive backside microprobing. Using this attack we were able to capture decrypted data directly from the data bus of the target IC's CPU core. We also present a fully invasive backside circuit edit. With this attack we were able to set security and configuration fuses of the device to arbitrary values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.