Providing cellular network services inside residential or office buildings has become challenging, especially for fifth-generation networks that use higher carrier frequencies. Additionally, new energy-efficient buildings contain envelopes such as low-emissivity glass and new multi-layer thermal insulations, all of which -unintendedly but effectively -also block radio signals. As a solution to those problems of indoor coverage, we suggest the use of passive antenna systems embedded into the building walls. We propose a numerical evaluation method for determining the electromagnetic transmission coefficient and the thermal insulation of a typical building wall. Next, we investigate two antenna configurations embedded to the wall, a two-patch and a four-patch design, both operating around 3.5 GHz. We show from numerical simulations that those antenna systems increase the transmission coefficient of the wall. At the same time, we show that the four-patch design does not compromise the thermal insulation of the wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.