In Québec, as observed globally, abnormally high honey bee mortality rates have been reported recently. Several potential contributing factors have been identified, and exposure to pesticides is of increasing concern. In maize fields, foraging bees are exposed to residual concentrations of insecticides such as neonicotinoids used for seed coating. Highly toxic to bees, neonicotinoids are also reported to increase AChE activity in other invertebrates exposed to sub-lethal doses. The purpose of this study was therefore to test if the honey bee's AChE activity could be altered by neonicotinoid compounds and to explore possible effects of other common products used in maize fields: atrazine and glyphosate. One week prior to pollen shedding, beehives were placed near three different field types: certified organically grown maize, conventionally grown maize or non-cultivated. At the same time, caged bees were exposed to increasing sub-lethal doses of neonicotinoid insecticides (imidacloprid and clothianidin) and herbicides (atrazine and glyphosate) under controlled conditions. While increased AChE activity was found in all fields after 2 weeks of exposure, bees close to conventional maize crops showed values higher than those in both organic maize fields and non-cultivated areas. In caged bees, AChE activity increased in response to neonicotinoids, and a slight decrease was observed by glyphosate. These results are discussed with regard to AChE activity as a potential biomarker of exposure for neonicotinoids.
The performance of two field probes (YSI 6600 and TriOS), used for the measurement of in vivo phycocyanin fluorescence, was compared and validated in the laboratory in 2008 and 2009 with cultures of Microcystis aeruginosa and field samples. The background noise of the two probes was low and the detection limits were estimated at 1500 cells mL(-1) for the YSI and 0.69 µg PC L(-1) for the TriOS. The linearity and repeatability of both probes have been excellent. Strong relationships were observed between the in vivo fluorescence and the total cyanobacterial biovolume (R(2) = 0.82 YSI; 0.83 TriOS) or the abundance (R(2) = 0.71 YSI; 0.75 TriOS) of cyanobacteria. However, the difference between cell densities determined by microscopy and measured by the YSI can be very large and has been associated to the variability of cell volume among cyanobacteria. This last observation makes the YSI a qualitative tool if a post-calibration is not done. The analysis of filtrated samples showed that dissolved phycocyanin (extracellular) may represent a significant fluorescence signal. No relationship could be established between the abundance, the total cyanobacterial biovolume or the in vivo fluorescence of phycocyanin and the concentrations of cyanotoxins (R(2) ≤ 0.22).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.