Papillomaviruses can infect epithelia and induce proliferative disorders. Different types of canine papillomaviruses have been found to be associated with distinct pathologies including exophytic warts as in canine oral papillomatosis, endophytic warts, and pigmented plaques and, in some cases, squamous cell carcinomas. Virus infection is followed by a phase of subclinical infection before the onset of symptoms. A diagnosis can in some cases be made clinically but should be verified if there are any doubts. Most papillomas do regress spontaneously within a few months. Preventative vaccination is possible but not on the market.
Papillomaviruses appear to be species-specific pathogens, and it was suggested that each animal species might harbour its own set of papillomaviruses. However, all approaches addressing the underlying evolutionary phenomena still suffer from very limited data about animal papillomaviruses. In case of the horse for example, only three equine papillomaviruses (EcPVs) have been identified. To further address the situation in this host, suspected papillomavirusassociated lesions were tested for EcPV DNA. Four novel EcPV types were detected and their genomes entirely cloned and sequenced. They display the characteristic organization, with early (E) and late (L) regions harbouring the seven classical open reading frames divided by non-coding regions. They were named EcPVs 4, 5, 6 and 7, according to their dissimilarity to other papillomaviruses. Most L1 nucleotide identities were shared with EcPV2 in case of EcPV4 (62 %) and EcPV5 (60 %) or with EcPV3 in case of EcPV6 (70 %) and EcPV7 (71 %). Thus, EcPVs 4 and 5 may establish novel species within the genus Dyoiota, while EcPVs 6 and 7 might fit into the genus Dyorho and belong to the same species as EcPV3. They were found in genital plaques (EcPV4), aural plaques (EcPV5, EcPV6) or penile masses (EcPV7). Interestingly, PCR analysis revealed the DNA of EcPV2 and EcPV4 as well as of EcPV3 and EcPV6 together in the same tissue samples, respectively. In conclusion, the DNA of four novel EcPV types was identified and cloned. They cluster with the known types and support broad genetic EcPV diversity in at least two of the known clades. Furthermore, PCR assays also provide evidence for EcPV co-infections in horses.
Equine penile papillomas, in situ carcinomas, and invasive carcinomas are hypothesized to belong to a continuum of papillomavirus-induced diseases. The former ones clinically present as small grey papules, while the latter 2 lesions are more hyperplasic or alternatively ulcerated. To test the hypothesis that these lesions are papillomavirus-induced, samples of 24 horses with characteristic clinical and histologic findings of penile papillomas or in situ or invasive squamous cell carcinomas were collected. As controls, 11 horses with various lesions-namely, Balanoposthitis (6 cases), melanoma (3 cases), follicular cyst (1 case), and amyloidosis (1 case)-were included. DNA was extracted and polymerase chain reaction applied to amplify papillomavirus DNA. The respective primers were designed to amplify DNA of the recently discovered equine papillomavirus EcPV2. All tested papilloma and squamous cell carcinoma samples were found to contain DNA of either of 2 previously published EcPV2 variants. Among the other samples 6 of 11 were found to contain EcPV2 DNA. To further support the findings and to determine where the papillomavirus DNA was located within the lesions, an in situ hybridization for the detection of EcPV2 DNA was established. The samples tested by this technique were found to clearly contain papillomavirus nucleic acid concentrated in the nucleus of the koilocytes. The findings of this study support previous data and the hypothesis that papillomaviruses induce the described penile lesions in horses.
Papillomaviruses have been linked to several skin disorders in the dog. In order to have a suitable diagnostic tool for canine papillomavirus detection, eight PCRs with published primer combinations were evaluated. The most sensitive PCR was used to demonstrate that papillomavirus DNA can be detected on nonlesional skin of dogs.
Conventional sensitivity/specificity figures or ROC concepts only use the qualitative statement of whether IgE is present or not. A risk assessment using the quantitative level of IgE antibody to an allergen increases the utility of the information in clinical context compared with a qualitative statement of whether IgE is present or not. The quantification demonstrated the link between specific IgE antibodies and allergic reactions. The use of objective, well performing quantitative tests should help improve diagnostic accuracy and might provide a way for the patient to understand and manage his or her daily situation and risk for reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.