The hydrogen and deuterium inventories of the ASDEX Upgrade divertor tiles were measured after the experimental period from December 1994 to July 1995 by thermal desorption spectroscopy (TDS) of samples cut out of the divertor tiles. The samples were heated by electron bombardment up to 2100 K; the released gases were measured by means of a calibrated quadrupole mass spectrometer. The measured hydrogen or deuterium inventories are of the order of loz3 m-'. They are larger for samples of the inner divertor than of the outer divertor by a factor of about 2. The largest inventory was found at the separatrix position of the inner divertor. Most of the released hydrogen (H) can be attributed to water adsorbed in the near surface region during the air exposure prior to the TDS measurements. The total inventories measured by TDS exceed the inventories in the near surface region (< 25 pm) measured by ion beam analysis methods by a factor of up to 10. Hence, the total hydrogen retention is governed by the diffusion out of the near surface region deep into the material. The hydrogen and deuterium inventories decrease with increasing surface temperature.
Wide dynamic range silicon diaphragm vacuum sensor by electrostatic servo systemDue to the rapid advancement in microsystem and micromachining technology in the past several years, the most important common pressure measuring principles have been successfully applied in miniaturized vacuum sensors. In addition to MicroPiranis®, microstructured gas friction gauges and miniaturized capacitance manometers have been developed recently too, whose dimensions are already in the millimeter and partly in the micrometer range. Exceptions in this development are ionization gauges which, due to their basic measuring principle, cannot be arbitrarily miniaturized without substantial restrictions in their operating performance. The article gives a rough summary of the present level of development of selected types of miniaturized vacuum gauges and points out limits and causes for the restricted miniaturizability of certain total pressure vacuum gauges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.