Speakers of different languages must attend to and encode strikingly different aspects of the world in order to use their language correctly (Sapir, 1921;Slobin, 1996). One such difference is related to the way gender is expressed in a language. Saying "I am happy" in English, does not encode any additional knowledge of the speaker that uttered the sentence. However, many other languages do have grammatical gender systems and so such knowledge would be encoded. In order to correctly translate such a sentence into, say, French, the inherent gender information needs to be retained/recovered. The same sentence would become either "Je suis heureux", for a male speaker or "Je suis heureuse" for a female one. Apart from morphological agreement, demographic factors (gender, age, etc.) also influence our use of language in terms of word choices or even on the level of syntactic constructions (Tannen, 1991;Pennebaker et al., 2003). We integrate gender information into NMT systems. Our contribution is twofold: (1) the compilation of large datasets with speaker information for 20 language pairs, and (2) a simple set of experiments that incorporate gender information into NMT for multiple language pairs. Our experiments show that adding a gender feature to an NMT system significantly improves the translation quality for some language pairs.
We describe the design, the evaluation setup, and the results of the DiscoMT 2015 shared task, which included two subtasks, relevant to both the machine translation (MT) and the discourse communities: (i) pronoun-focused translation, a practical MT task, and (ii) cross-lingual pronoun prediction, a classification task that requires no specific MT expertise and is interesting as a machine learning task in its own right. We focused on the English-French language pair, for which MT output is generally of high quality, but has visible issues with pronoun translation due to differences in the pronoun systems of the two languages. Six groups participated in the pronoun-focused translation task and eight groups in the cross-lingual pronoun prediction task.
Current approaches to statistical machine translation assume that sentences in a text are independent, ignoring the property of connectedness present in virtually all discourse. We provide an extensive overview of the literature about statistical machine translation that can be related to discourse phenomena and present a detailed investigation and discussion of existing research efforts on a particular discourse-related problem, the translation of anaphoric pronouns. Comparing different approaches to discourse in statistical machine translation allows us to identify fundamental problems and draw conclusions from an overarching perspective
We describe the design, the evaluation setup, and the results of the 2016 WMT shared task on cross-lingual pronoun prediction. This is a classification task in which participants are asked to provide predictions on what pronoun class label should replace a placeholder value in the target-language text, provided in lemmatised and PoS-tagged form. We provided four subtasks, for the English-French and English-German language pairs, in both directions. Eleven teams participated in the shared task; nine for the EnglishFrench subtask, five for French-English, nine for English-German, and six for German-English. Most of the submissions outperformed two strong language-modelbased baseline systems, with systems using deep recurrent neural networks outperforming those using other architectures for most language pairs.
Word segmentation is a low-level NLP task that is non-trivial for a considerable number of languages. In this paper, we present a sequence tagging framework and apply it to word segmentation for a wide range of languages with different writing systems and typological characteristics. Additionally, we investigate the correlations between various typological factors and word segmentation accuracy. The experimental results indicate that segmentation accuracy is positively related to word boundary markers and negatively to the number of unique non-segmental terms. Based on the analysis, we design a small set of language-specific settings and extensively evaluate the segmentation system on the Universal Dependencies datasets. Our model obtains state-of-the-art accuracies on all the UD languages. It performs substantially better on languages that are non-trivial to segment, such as Chinese, Japanese, Arabic and Hebrew, when compared to previous work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.