Die im Oktober 2015 in Albstadt‐Ebingen realisierte Konstruktion verzichtet vollständig auf eine schlaffe oder vorgespannte Stahlbewehrung und ist damit die erste ausschließlich mit Textilfasern bewehrte Betonbrücke weltweit. Der Trogquerschnitt mit Materialstärken von 70 mm (Trogwände) bzw. 90 mm (Gehwegplatte) ist als monolithisches Fertigteil her gestellt worden. Das Brückendeck, das keiner weiteren Geh belagsaufbauten bedarf, wiegt bei einer Spannweite von 15 m und einer Breite von 3 m lediglich 14 t (ca. 310 kg/m2) und somit knapp die Hälfte eines vergleichbaren konventionellen Stahl betonbrückendecks. Neben Material‐ und Gewichtsersparnis kann von einer überdurchschnittlich langen Lebensdauer bei minimalem Wartungsaufwand ausgegangen werden, da die häufig schadenverursachende Stahlkorrosion des Stahlbetonbaus komplett umgangen wird. Der Einsatz von carbon faserbewehrtem Beton (Carbonbeton) ist in Deutschland derzeit bauaufsichtlich noch nicht zugelassen, daher musste eine Zustimmung im Einzelfall (ZiE) erwirkt werden.
In Albstadt‐Lautlingen wurde eine ältere Fußgängerbrücke aus Stahlbeton durch eine elegante Brücke aus Textilbeton ersetzt. Durch die Kombination von textilbewehrtem Beton mit einer Vorspannung ohne Verbund ließ sich eine für Betontragwerke außergewöhnliche Schlankheit erzielen. Die 97 m lange Brücke über die Bundesstraße B 463 besteht aus sechs Fertigteilen, die bei einer Elementlänge von 17,2 m eine Bauhöhe von 43 cm aufweisen. Im Beitrag werden Konstruktion, Bemessung und insbesondere das Schwingungsverhalten beschrieben. Die Untersuchungen zu den verwendeten Baustoffen sowie zum Tragverhalten und zur Dauerhaftigkeit finden sich in einem separaten Beitrag in diesem Heft.A Pedestrian Bridge Made of Textile Reinforced ConcreteThe pedestrian bridge over a state road in Albstadt, Germany, had to be torn down due to immense corrosion damages of the steel reinforcement and was replaced by a new bridge. The design of the new bridge allows a slender and durable construction with high demands on the concrete surface. The bridge with a total length of 97 m is subdivided in six prefabricated parts with a maximum element length of 17,2 m and a span of Ls = 15 m. The height of only 43 cm is possible by using the innovative composite material textile reinforced concrete. Thus, a slenderness of Ls/H = 35 and an extreme slender bridge construction is achieved. Due to the non‐corrosive textile reinforcement a very small concrete cover is possible and, thus, webs and cantilever arms can be designed very thin. The paper describes the construction, design and dynamic behaviour. A report on materials, load bearing behaviour and on the durability is available as a separate paper in this issue.
In the last 30 years, façade-panels made of steel-reinforced concrete have become less attractive for architects and clients. Due to the metallic reinforcement, the insufficient concrete covers of former design code generations and hence the material-dependent corrosion, many cases of damage occurred. Using technical textiles for a new composite material, Textile Reinforced Concrete (TRC), it is possible to produce concrete structures which are not vulnerable to corrosion. The presented ventilated large-sized façade elements and self-supporting sandwich panels exemplify the capability of TRC. In the paper, applied materials are characterized and the production process of tailor-made textile reinforcements as well as the load-bearing behavior of the members is described.
Textile Reinforced Concrete (TRC) is a new composite material using mesh-like technical textiles to transfer tensile forces in a concrete member. The main advantage in using these reinforcements is the reduction of concrete covers to only few millimeters leading to slender and light-weight concrete applications like ventilated facade elements and sandwich panels with TRC facings. Based on three applications, which are realized in the last two years, it is revealed that there is a need not only for capable planar fabrics but also for spatial structures. Inherently stable reinforcement structures are achieved by impregnating the fabrics with a resin (e.g. epoxy resin) and curing the structures in the desired shape at temperatures up to 180°C. Moreover, the utilization of the cross-section of the rovings is homogenized and, thus, a tensile strength up to 1400 MPa is achieved for AR-glass fabrics. The article deals with selected applications for facade structures made of TRC, material properties and demands on the textile reinforcement as well as production processes. Furthermore, test results regarding the load-bearing behavior of these selected applications are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.