Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation.
Background Due to improved imaging sensitivity, the term “oligometastatic” prostate cancer disease is diagnosed more often, leading to an increasing interest in metastasis-directed therapy (MDT). There are two types of radiation based MDT applied when treating oligometastatic disease: (1) stereotactic body radiation therapy (SBRT) generally used for bone metastases; or (2) SBRT for isolated nodal oligometastases combined with prophylactic elective nodal radiotherapy. This review aims to summarize current evidence data, which may shed light on the optimal management of this heterogeneous group of patients. Methods A systematic review of the Medline database through PubMed was performed according to PRISMA guidelines. All relevant studies published up to November 2020 were identified and screened. Fifty-six titles were included. Besides outcome parameters, different prognostic and predictive factors were assessed, including site of metastases, time between primary treatment and MDT, use of systemic therapies, hormone sensitivity, as well as pattern of recurrence. Findings Evidence consists largely of retrospective case series and no consistent precise definition of oligometastasis exists, however, most investigators seem to acknowledge the need to distinguish between patients presenting with what is frequently called “synchronous” versus “metachronous” oligometastatic disease. Available data on radiotherapy as MDT demonstrate high local control rates and a small but relevant proportion of patients without progressive disease after 2 years. This holds true for both hormone sensitive and castration resistant prostate cancer diseases. The use of 68Ga-PSMA PET/CT for staging increased dramatically. Radiation doses and field sizes varied considerably among the studies. The search for relevant prognostic and predictive factors is ongoing. Conclusions To our best knowledge this review on oligometastatic prostate cancer included the largest number of original articles. It demonstrates the therapeutic potential and challenges of MDT for oligometastatic prostate cancer. Prospective studies are under way and will provide further high-level evidence.
Background: The APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) family-mediated mutagenesis is widespread in human cancers. However, our knowledge of the biological feature and clinical relevance of APOBECs and APOBEC mutagenesis in cancers remains limited. Methods: In this study, with a series of bioinformatic and statistical approaches, we performed a comprehensive analysis of multiple levels of data, including whole-exome sequencing (WES) and targeted next-generation sequencing (NGS), transcriptome (bulk RNA-seq and single-cell RNA-seq), immune signatures and immune checkpoint blockade (ICB) potential, patient survival and drug sensitivity, to reveal the distribution characteristics and clinical significance of APOBECs and APOBEC mutagenesis in pan-cancer especially bladder cancer (BLCA). Results: APOBEC mutagenesis dominates in the mutational patterns of BLCA. A higher enrichment score of APOBEC mutagenesis correlates with favorable prognosis, immune activation and potential ICB response in BLCA patients. APOBEC3A and 3B play a significant role in the malignant progression and cell differentiation within the tumor microenvironment. Furthermore, using machine learning approaches, a prognostic APOBEC mutagenesis-related model was established and validated in different BLCA cohorts. Conclusions: Our study illustrates the characterization of APOBECs and APOBEC mutagenesis in multiple cancer types and highlights its potential value as a promising biomarker for prognosis and immunotherapy in BLCA.
No abstract
Purpose Nodal recurrent prostate cancer (PCa) represents a common state of disease, amenable to local therapy. PSMA-PET/CT detects PCa recurrence at low PSA levels. The aim of this study was to evaluate the outcome of PSMA-PET/CT-based salvage radiotherapy (sRT) for lymph node (LN) recurrence. Methods A total of 100 consecutive patients treated with PSMA-PET/CT-based salvage elective nodal radiotherapy (sENRT) for LN recurrence were retrospectively examined. Patients underwent PSMA-PET/CT scan due to biochemical persistence (bcP, 76%) or biochemical recurrence (bcR, 24%) after radical prostatectomy (RP). Biochemical recurrence-free survival (BRFS) defined as PSA < post-RT nadir + 0.2 ng/ml and distant metastasis-free survival (DMFS) were calculated using the Kaplan–Meier method and uni- and multivariate analysis was performed. Results Median follow-up was 37 months. Median PSA at PSMA-PET/CT was 1.7 ng/ml (range 0.1–40.1) in patients with bcP and 1.4 ng/ml (range 0.3–5.1) in patients with bcR. PSMA-PET/CT detected 1, 2, and 3 or more LN metastases in 35%, 23%, and 42%, respectively. Eighty-three percent had only pelvic, 2% had only paraaortic, and 15% had pelvic and paraaortic LN metastases. Cumulatively, a total dose converted to EQD21.5 Gy of 66 Gy (60–70 Gy) was delivered to the prostatic fossa, 70 Gy (66–72 Gy) to the local recurrence, if present, 65.1 Gy (56–66 Gy) to PET-positive lymph nodes, and 47.5 Gy (42.4–50.9 Gy) to the lymphatic pathways. Concomitant androgen deprivation therapy (ADT) was administered in 83% of patients. One-, 2-, and 3-year BRFS was 80.7%, 71.6%, and 65.8%, respectively. One-, 2-, and 3-year DMFS was 91.6%, 79.1%, and 66.4%, respectively. In multivariate analysis, concomitant ADT, longer ADT duration (≥ 12 vs. < 12 months) and LN localization (pelvic vs. paraaortic) were associated with improved BRFS and concomitant ADT and lower PSA value before sRT (< 1 vs. > 1 ng/ml) with improved DMFS, respectively. No such association was seen for the number of affected lymph nodes. Conclusions Overall, the present analysis shows that the so far, unmatched sensitivity and specificity of PSMA-PET/CT translates in comparably high BRFS and DMFS after PSMA-PET/CT-based sENRT for patients with PCa LN recurrence. Concomitant ADT, duration of ADT, PSA value before sRT, and localization of LN metastases were significant factors for improved outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.