-Honeybee (Apis mellifera L.) pathogens and parasites and the negative effects thereof on honeybee populations remain an issue of public concern and the subject of active research. Africa with its high genetic diversity of honeybee sub-species and large wild population is also exposed to various factors responsible for colony losses in other parts of the world. Apart from the current American foulbrood epidemic in the Western Cape of South Africa, no large-scale colony losses have been reported elsewhere on the continent. We discuss the presence of pathogens, parasites, pests and predators of African honeybees as well as the threats they face in relation to habitat changes arising from the impact of increased human populations. In addition, we discuss current efforts aimed at protecting and promoting the health of African honeybees.honeybees / Africa / honeybee health / pathogens / parasites / pests / predators / habitat loss
Many parts of the globe experience severe losses and fragmentation of habitats, affecting the self-sustainability of pollinator populations. A number of bee species coexist as wild and managed populations. Using honey bees as an example, we argue that several management practices in beekeeping threaten genetic diversity in both wild and managed populations, and drive population decline. Large-scale movement of hive stocks, introductions into new areas, breeding programs and trading of queens contribute to reducing genetic diversity, as recent research demonstrated for wild and managed honey bees within a few decades. Examples of the effects of domestication in other organisms show losses of both genetic diversity and fitness functions. Cases of natural selection and feralization resulted in maintenance of a higher genetic diversity, including in a Varroa destructor surviving population of honey bees. To protect the genetic diversity of honey bee populations, exchange between regions should be avoided. The proposed solution to selectively breed all local subspecies for a use in beekeeping would reduce the genetic diversity of each, and not address the value of the genetic diversity present in hybridized populations. The protection of Apis mellifera’s, Apis cerana’s and Apis koschevnikovi’s genetic diversities could be based on natural selection. In beekeeping, it implies to not selectively breed but to leave the choice of the next generation of queens to the colonies, as in nature. Wild populations surrounded by beekeeping activity could be preserved by allowing Darwinian beekeeping in a buffer zone between the wild and regular beekeeping area.
Three species of Rattus, Norway rat (R. norvergicus), black rat (R. rattus) and Asian house rat (R. tanezumi) are currently known to occur in South Africa. The latter two species are cryptic and form part of the Rattus rattus species complex. Historically, R. norvegicus has been reported to occur along the coast and in urban centres, R. rattus is widespread in most urban areas, except in the drier areas, while R. tanezumi was only recorded to occur in the country (and Africa) ca. 15 years ago, and its distribution remains unknown. The aim of this study was to predict the potential distribution of R. tanezumi in South Africa and assess how it overlaps with that of R. norvegicus and R. rattus using species distribution modelling. Rattus tanezumi was predicted to mainly occur in most inland urban areas and along the coast. The distribution of R. rattus was as expected, in contrast, the predicted range of R. norvegicus was not restricted to the coast but also included inland urban areas. All three species showed broad potential distributional ranges that overlapped extensively indicating that their establishment and spread may be influenced by similar factors such as proximity to urban areas and a wet and moderate climate. These results allow insights into assessing their risk of establishment and for formulating appropriate intervention strategies for their management and control.
The aardwolf, Proteles cristata, is a highly specialized myrmecophagous carnivore that feeds almost exclusively on termites of the genus Trinervitermes. Here we report data from an ongoing analysis of aardwolf diet, where we documented remains of sun spiders and scorpions in aardwolf scats. Although the prevalence of these items was low, with sun spiders recorded in nine and scorpion remains in one of 246 scats, our observations suggest that aardwolves opportunistically feed on larger prey than previously thought. However, our observations do not suggest that aardwolves utilized these large prey items as alternatives to their main food resource during periods of food scarcity. Therefore, we suggest that the adaptive advantages of such opportunism may be small, but that the observed behavioural plasticity could be advantageous under specific environmental conditions and therefore is maintained as a behavioural trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.