SummaryA variety of methods are used in honey bee research and differ depending on the level at which the research is conducted. On an individual level, the handling of individual honey bees, including the queen, larvae and pupae are required. There are different methods for the immobilising, killing and storing as well as determining individual weight of bees. The precise timing of developmental stages is also an important aspect of sampling individuals for experiments. In order to investigate and manipulate functional processes in honey bees, e.g. memory formation and retrieval and gene expression, microinjection is often used. A method that is used by both researchers and beekeepers is the marking of queens that serves not only to help to locate her during her life, but also enables the dating of queens. Creating multiple queen colonies allows the beekeeper to maintain spare queens, increase brood production or ask questions related to reproduction. On colony level, very useful techniques are the measurement of intra hive mortality using dead bee traps, weighing of full hives, collecting pollen and nectar, and digital monitoring of brood development via location recognition. At the population level, estimation of population density is essential to evaluate the health status and using beelines help to locate wild colonies. These methods, described in this paper, are especially valuable when investigating the effects of pesticide applications, environmental pollution and diseases on colony survival. Métodos estándar diversos para la investigación en Apis mellifera ResumenEn la investigación de la abeja de la miel, se han usado una variedad de métodos que se diferencian en función del nivel en el que se realiza la investigación. Al nivel individual, el manejo de las abejas individuales es necesario, incluyendo a la reina, las larvas y las pupas. Existen diferentes métodos para la inmovilización, mortandad y almacenamiento, así como para la determinación del peso individual de las abejas. La precisión en la sincronización de las etapas de desarrollo es también un aspecto importante de los experimentos con muestreos individuales.La microinyección se utiliza a menudo con el fin de investigar y manipular los procesos funcionales de las abejas melíferas, como por ejemplo, la formación y recuperación de la memoria y la expresión génica. Un método utilizado tanto por investigadores como apicultores es el marcado de las reinas, que sirve no sólo para ayudar a localizarlas durante su vida, sino que también permite su datación. La creación de varias colmenas a partir de reinas permite al apicultor mantener reinas de repuesto, aumentar la producción de cría o hacer preguntas relacionadas con la reproducción. Al nivel de colmena, la medición de la mortalidad intra colmena utilizando trampas de abejas muertas, el pesaje de las colmenas completas, la recolección de polen y néctar, y el seguimiento digital del desarrollo de la cría a través del reconocimiento de su ubicación, son algunas de las técnicas más útiles. Al nivel p...
-Honeybee (Apis mellifera L.) pathogens and parasites and the negative effects thereof on honeybee populations remain an issue of public concern and the subject of active research. Africa with its high genetic diversity of honeybee sub-species and large wild population is also exposed to various factors responsible for colony losses in other parts of the world. Apart from the current American foulbrood epidemic in the Western Cape of South Africa, no large-scale colony losses have been reported elsewhere on the continent. We discuss the presence of pathogens, parasites, pests and predators of African honeybees as well as the threats they face in relation to habitat changes arising from the impact of increased human populations. In addition, we discuss current efforts aimed at protecting and promoting the health of African honeybees.honeybees / Africa / honeybee health / pathogens / parasites / pests / predators / habitat loss
The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy.
SUMMARYVarroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (A. m. scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared to susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was a higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programs aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.2
The devastating effects of Varroa destructor on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death.Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.