SUMMAR Y The aim of the present study was to evaluate time-on-task effects on subjective fatigue in two different tasks of varying monotony during night-time testing (20:00 to 4:00 hours) in a sleep deprivation intervention. The experiment included eight test runs separated by breaks of approximately 20 min. Twenty healthy volunteers performed a driving simulator and the Mackworth clock vigilance task in four of the test runs each. Sequence of tasks was varied across subjects. Before and after each task, subjective sleepiness was assessed by means of the Karolinska sleepiness scale and subjective fatigue was rated on the Samn-Perelli checklist. Fatigue and sleepiness significantly increased over the course of the night. Both tasks led to an increase in fatigue and sleepiness across test runs. However, this time-on-task effect was larger in the vigilance than in the driving simulator task. It is important to note that fatigue and sleepiness in one test run were not influenced by the task performed in the preceding test run, that is there were no cross-over effects. The results suggest that time-on-task effects superimpose circadian and sleep-related factors affecting fatigue. They depend on the monotony of the task and can be quantified by means of a design including separate test runs divided by breaks.k e y w o r d s driving simulator, fatigue, model, time-on-task, vigilance
By orienting attention, auditory cues can improve the discrimination of spatially congruent visual targets. Looming sounds that increase in intensity are processed preferentially by the brain. Thus, we investigated whether auditory looming cues can orient visuo-spatial attention more effectively than static and receding sounds. Specifically, different auditory cues could redirect attention away from a continuous central visuo-motor tracking task to peripheral visual targets that appeared occasionally. To investigate the time course of crossmodal cuing, Experiment 1 presented visual targets at different time-points across a 500 ms auditory cue’s presentation. No benefits were found for simultaneous audio-visual cue-target presentation. The largest crossmodal benefit occurred at early cue-target asynchrony onsets (i.e., CTOA = 250 ms), regardless of auditory cue type, which diminished at CTOA = 500 ms for static and receding cues. However, auditory looming cues showed a late crossmodal cuing benefit at CTOA = 500 ms. Experiment 2 showed that this late auditory looming cue benefit was independent of the cue’s intensity when the visual target appeared. Thus, we conclude that the late crossmodal benefit throughout an auditory looming cue’s presentation is due to its increasing intensity profile. The neural basis for this benefit and its ecological implications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.