Previous work has suggested that seeing a famous face move aids the recognition of identity, especially when viewing conditions are degraded (Knight Johnston, 1997; Lander, Christie, Bruce, 1999). Experiment 1 investigated whether the beneficial effects of motion are related to a particular type of facial motion (expressing, talking, or rigid motion). Results showed a significant beneficial effect of both expressive and talking movements, but no advantage for rigid motion, compared with a single static image. Experiment 2 investigated whether the advantage for motion is uniform across identity. Participants rated moving famous faces for distinctiveness of motion. The famous faces (moving and static freeze frame) were then used as stimuli in a recognition task. The advantage for face motion was significant only when the motion displayed was distinctive. Results suggest that a reason why moving faces are easier to recognize is because some familiar faces have characteristic motion patterns, which act as an additional cue to identity
In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section “An empirically based minimal reporting guideline”).
Blinking is a natural user-induced response which paces visual information processing. This study investigates whether blinks are viable for segmenting continuous electroencephalography (EEG) activity, for inferring cognitive demands in ecologically valid work environments. We report the blink-related EEG measures of participants who performed auditory tasks either standing, walking on grass, or whilst completing an obstacle course. Blink-related EEG activity discriminated between different levels of cognitive demand during walking. Both behavioral parameters (e.g., blink duration or head motion) and blink-related EEG activity varied with walking conditions. Larger occipital N1 was observed during walking, relative to standing and traversing an obstacle course, which reflects differences in bottom-up visual perception. In contrast, the amplitudes of top-down components (N2, P3) significantly decreased with increasing walking demands, which reflected narrowing attention. This is consistent with blink-related EEG, specifically in Theta and Alpha power that, respectively, increased and decreased with increasing demands of the walking task. This work presents a novel and robust analytical approach to evaluate the cognitive demands experienced in natural work settings, which precludes the use of artificial task manipulations for data segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.