We explored the impact of mutations in the NOTCH1, FBW7 and PTEN genes on prognosis and downstream signaling in a well-defined cohort of 47 pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients. In T-ALL lymphoblasts, we identified high frequency mutations in NOTCH1 (n=16), FBW7 (n=5) and PTEN (n=26). NOTCH1 mutations resulted in 1.3-3.3-fold increased transactivation of a HES1 reporter construct over wild-type NOTCH1; mutant FBW7 resulted in further augmentation of reporter gene activity. NOTCH1 and FBW7 mutations were accompanied by increased median transcripts for NOTCH1 target genes (HES1, DELTEX1, cMYC). However, none of these mutations were associated with treatment outcome. Elevated HES1, DELTEX1 and cMYC transcripts were associated with significant increases in transcript levels of several chemotherapy relevant genes, including MDR1, ABCC5, reduced folate carrier, asparagine synthetase, thiopurine methyltranserase, Bcl-2 and dihydrofolate reductase. PTEN transcripts positively correlated with HES1 and cMYC transcript levels. Our results suggest that (1) multiple factors should be considered with attempting to identify molecular-based prognostic factors for pediatric T-ALL, and (2) depending on the NOTCH1 signaling status, modifications in the types or dosing of standard chemotherapy drugs for T-ALL, or combinations of agents capable of targeting NOTCH1, AKT and/or mTOR with standard chemotherapy agents may be warranted.
In this report, this region was further refined to TMDs 11-12 by digestion with 2-nitro-5-thiocyanatobenzoic acid. A transportcompetent cysteine-less hRFC was used as a template to prepare single cysteine-replacement mutant constructs in which each residue from Glu-394 to Asp-420 of TMD 11 and Tyr-435 to His-457 of TMD 12 was replaced individually by a cysteine. The mutant constructs were transfected into hRFC-null HeLa cells. Most of the 50 single cysteine-substituted constructs were expressed at high levels on Western blots. With the exception of G401C hRFC, all mutants were active for Mtx transport. Treatment with sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) had no effect on hRFC activity for all of the cysteine mutants within TMD 12 and for the majority of the cysteine mutants within TMD 11. However, MTSES inhibited Mtx uptake by the T404C, A407C, T408C, T412C, F416C, I417C, V418C, and S419C mutants by 25-65%. Losses of activity by MTSES treatment for T404C, A407C, T412C, and I417C hRFCs were appreciably reversed in the presence of excess leucovorin, a hRFC substrate. Our results strongly suggest that residues within TMD 11 are likely critical structural and/or functional components of the putative hRFC transmembrane channel for anionic folate and anti-folate substrates.
The human reduced folate carrier (hRFC) facilitates membrane transport of folates and antifolates. hRFC is characterized by 12 transmembrane domains (TMDs). To identify residues or domains involved in folate binding, we used substituted cysteine (Cys) accessibility methods (SCAM) with sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES). We previously showed that residues in TMD11 of hRFC were involved in substrate binding, whereas those in TMD12 were not (Hou, Z., Stapels, S. E., Haska, C. L., and Matherly, L. H. (2005) J. Biol. Chem. 280, 36206 -36213). In this study, 232 Cys-substituted mutants spanning TMDs 1-10 and conserved stretches within the TMD6 -7 (residues 204 -217) and TMD10 -11 connecting loop domains were transiently expressed in hRFC-null HeLa cells. All Cys-substituted mutants showed moderate to high levels of expression on Western blots, and only nine mutants including R133C, I134C, A135C, Y136C, S138C, G163C, Y281C, R373C, and S313C were inactive for methotrexate transport. MTSES did not inhibit transport by any of the mutants in TMDs 1, 3, 6, and 9 or for positions 204 -217. Whereas most of the mutants in TMDs 2, 4, 5, 7, 8, and 10, and in the TMD10 -11 connecting loop were insensitive to MTSES, this reagent inhibited methotrexate transport (25-75%) by 26 mutants in these TMDs. For 13 of these (Y126C, S137C, V160C, S168C, W274C, S278C, V284C, V288C, A311C, T314C, Y376C, Q377C, and V380C), inhibition was prevented by leucovorin, another hRFC substrate. Combined with our previous findings, these results implicate amino acids in TMDs 4, 5, 7, 8, 10, and 11, but not in TMDs 1, 2, 3, 6, 9, or 12, as important structural or functional components of the putative hydrophilic cavity for binding of anionic folate substrates.Folic acid is the fully oxidized monoglutamyl form of the water-soluble vitamin that is used in dietary supplements and in fortified foods. In cells and tissues, folic acid is converted to coenzyme forms required in one-carbon transfer reactions involved in the biosynthesis of nucleotides and the amino acids, serine and methionine (1). Thus, folates are critical for cell proliferation and tissue regeneration. Further, folic acid supplementation has been credited with providing a beneficial role in preventing a range of disorders, including cardiovascular disease, neural tube defects, and cancer (2, 3).Because folates cannot be synthesized de novo in mammalian cells, external dietary sources are essential. Reflecting their anionic character, the natural folates show only a minimal capacity to cross biological membranes by diffusion alone. Accordingly, sophisticated membrane transport systems have evolved to facilitate uptake of folate cofactors by mammalian cells and tissues, of which the ubiquitously expressed reduced folate carrier (RFC) 2 (4) appears to predominate (5). RFC levels are also important determinants of the anti-tumor activities of chemotherapy drugs such as methotrexate (Mtx) and the newer antifolates, pemetrexed (Alimta) and raltitrexed (Tomudex). Moreover, loss of ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.