The present study was undertaken to determine the relationship between dose of porcine growth hormone (pGH) and growth performance of pigs. Porcine GH was administered daily for 35 d [buffer-injected control = (C); 10 micrograms/kg body weight (BW) = (L); 30 micrograms/kg BW = (M); 70 micrograms/kg BW = (H)] to barrows (initial wt = 50 kg). Growth rate was significantly increased by pGH (14% for H dose vs C). Feed efficiency was increased in a dose-related manner (L = 7%, M = 10%, H = 17%) by pGH. There was a concurrent change in carcass composition of pGH-treated pigs. The H dose of pGH decreased the percentage of carcass lipid by 25% (P less than .05). Muscle mass was significantly increased in H vs C pigs (31 vs 26 kg). Serum insulin-like growth factor 1 (IGF-1) concentration increased in a manner that was linearly related to the pGH dose (r = .87). No antibodies to pGH were detected in any of the pigs. In summary, these results extend our earlier findings that pGH increases growth performance markedly. Based on the present findings it appears that the maximally effective dose of pGH is greater than 70 micrograms.kg BW-1.d-1 since several indices of the growth-promoting and metabolic effects of pGH (% carcass protein, % carcass lipid and feed efficiency) had not plateaued.
This study was conducted to establish the extent to which different doses of pituitary porcine growth hormone (ppGH) increase pig growth performance. Pigs were treated daily for 11 wk with 0, 35 or 70 micrograms ppGH/kg BW. In addition, these effects were compared with those produced by treating pigs with 0, 35, 70 or 140 micrograms.kg BW-1.d-1 of a recombinantly derived analog of porcine growth hormone (rpGH). This analog lacks the first seven amino acids at the NH2 terminus. Growth rate was increased similarly by ppGH and rpGH (the maximal increase was 19%). Feed efficiency was improved by ppGH and rpGH (the maximal response was 25%). This improvement in feed efficiency was associated with a decrease in feed intake (17% with the largest dose of rpGH). Both ppGH and rpGH decreased adipose tissue growth and increased muscle mass. Carcass lipid was decreased by 68% in pigs treated with the largest dose of rpGH. The recombinant pGH analog appeared to be less potent than ppGH in decreasing adipose tissue growth rate. All other parameters measured, however, indicated that rpGH mimicked the biological effects of ppGH (including binding to pig liver membranes and induction of insulin-like growth factor I production). Sensory panel evaluations indicated that neither ppGH nor rpGH affected pork palatability. Larger doses of pGH (greater than 70 micrograms/kg BW) adversely affected pig mobility. This impairment in mobility appears to be due to osteochondrosis. Our findings establish that the rpGH analog is equipotent to ppGH in stimulating growth performance and that pigs can be treated without any significant adverse effects when they are treated with less than 70 micrograms of pGH.kg BW-1.d-1.
The current study was undertaken to determine the effects of human growth hormone-releasing factor [hpGRF-(1-44)-NH2] on growth performance in pigs and whether this response was comparable to exogenous porcine growth hormone (pGH) treatment. Preliminary studies were conducted to determine if GRF increased plasma GH concentration after iv and im injection and the nature of the dose response. Growth hormone-releasing factor stimulated the release of pGH in a dose-dependent fashion, although the individual responses varied widely among pigs. The results from the im study were used to determine the dose of GRF to use for a 30-d growth trial. Thirty-six Yorkshire-Duroc barrows (initial wt 50 kg) were randomly allotted to one of three experimental groups (C = control, GRF and pGH). Pigs were treated daily with 30 micrograms of GRF/kg body weight by im injection in the neck. Pigs treated with pGH were also given 30 micrograms/kg body weight by im injection. Growth rate was increased 10% by pGH vs C pigs (P less than .05). Growth rate was not affected by GRF; however, hot and chilled carcass weights were increased 5% vs C pigs (P less than .05). On an absolute basis, adipose tissue mass was unaffected by pGH or GRF. Carcass lipid (percent of soft-tissue mass) was decreased 13% by GRF (P less than .05) and 18% by pGH (P less than .05). Muscle mass was significantly increased by pGH but not by GRF. There was a trend for feed efficiency to be improved by GRF; however, this was not different from control pigs. In contrast, pGH increased feed efficiency 19% vs control pigs (P less than .05). Chronic administration of GRF increased anterior pituitary weight but did not affect pituitary GH content or concentration. When blood was taken 3 h post-injection, both GRF- and pGH-treated pigs had lower blood-urea nitrogen concentrations. Serum glucose was significantly elevated by both GRF and pGH treatment. This was associated with an elevation in serum insulin. These results indicate that increasing the GH concentration in blood by either exogenous GH or GRF enhances growth performance. The effects of pGH were more marked than for GRF. Further studies are needed to determine the optimal dose of GRF to administer in growth trials and the appropriate pattern of GRF administration in order to determine whether GRF will enhance pig growth performance to the extent that exogenous pGH does.
The effects of physiological levels of pituitary porcine GH (ppGH) and recombinant pGH (rpGH) on lipogenesis in pig adipose tissue incubated with insulin and hydrocortisone (HC) were measured in short term (2-h) incubations and after long term culture (50 h). HC (50 ng/ml) had no effect on lipogenesis in 2-h incubations; however, HC and insulin (10 ng/ml) maintained the lipogenic capacity of cultured tissue at rates comparable to those in fresh adipose tissue. Neither ppGH nor rpGH (1 and 10 ng/ml, respectively) had any effect in short term incubations. After 50 h of culture, ppGH and rpGH both directly antagonized the ability of insulin to maintain lipogenesis; however, this antagonism was markedly enhanced by HC. The present study is the first to demonstrate a direct antagonism of insulin action by ppGH and rpGH in pig adipose tissue, and a marked potentiation of this antagonism by HC. This intrinsic property of pGH may account, in part, for the decrease in adipose tissue growth rates in pigs treated chronically with pGH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.