Absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein, is responsible for the Fragile X syndrome, the most common form of inherited mental retardation. FMRP is a cytoplasmic protein associated with mRNP complexes containing poly(A)+mRNA. As a step towards understanding FMRP function(s), we have established the immortal STEK Fmr1 KO cell line and showed by transfection assays with FMR1-expressing vectors that newly synthesized FMRP accumulates into cytoplasmic granules. These structures contain mRNAs and several other RNA-binding proteins. The formation of these cytoplasmic granules is dependent on determinants located in the RGG domain. We also provide evidence that FMRP acts as a translation repressor following co-transfection with reporter genes. The FMRP-containing mRNPs are dynamic structures that oscillate between polyribosomes and cytoplasmic granules reminiscent of the Stress Granules that contain repressed mRNAs. We speculate that, in neurons, FMRP plays a role as a mRNA repressor in incompetent mRNP granules that have to be translocated from the cell body to distal locations such as dendritic spines and synaptosomes.
Backgroundp21WAF1/CIP1 is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown.Methodology/Principal FindingsWe identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( = PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis.Conclusions/SignificanceWe propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1.
The NR4A3 nuclear receptor is implicated in the development of extraskeletal myxoid chondrosarcoma (EMC), primitive sarcoma unrelated to conventional chondrosarcomas, through a specific fusion with EWSR1 resulting in an aberrant fusion protein that is thought to disrupt the transcriptional regulation of specific target genes. We performed an expression microarray analysis of EMC tumors expressing the EWSR1/NR4A3 fusion protein, comparing their expression profiles to those of other sarcoma types. We thereby identified a set of genes significantly over-expressed in EMC relative to other sarcomas, including PPARG and NDRG2. Western blot or immunohistochemical analyses confirm that PPARG and NDRG2 are expressed in tumors positive for EWSR1/NR4A3. Bioinformatic analysis identified a DNA response element for EWSR1/NR4A3 in the PPARG promoter, and band-shift experiments and transient transfections indicate that EWSR1/NR4A3 can activate transcription through this element. Western blots further show that an isoform of the native NR4A3 receptor lacking the C terminal domain is very highly expressed in tumors positive for EWSR1/NR4A3, and co-transfections of this isoform along with EWSR1/NR4A3 indicate that it may negatively regulate the activity of the fusion protein on the PPARG promoter. These results suggest that the overall expression of PPARG in EMC may be regulated in part by the balance between EWSR1/NR4A3 and NR4A3, and that PPARG may play a crucial role in the development of these tumors. The specific up-regulation of PPARG by EWSR1/NR4A3 may also have potential therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.