Fertilization occurs after the completion of the sperm acrosome reaction, a secretory event that is triggered during gamete adhesion. ZP3, an egg zona pellucida glycoprotein, produces a sustained increase of the internal Ca(2+) concentration in mouse sperm, leading to acrosome reactions. Here we show that the sustained Ca(2+) concentration increase is due to the persistent activation of a Ca(2+) influx mechanism during the late stages of ZP3 signal transduction. These cells also possess a Ca(2+) store depletion-activated Ca(2+) entry pathway that is open after treatment with thapsigargin. Thapsigargin and ZP3 activate the same Ca(2+) permeation mechanism, as demonstrated by fluorescence quenching experiments and by channel antagonists. These studies show that ZP3 generates a sustained Ca(2+) influx through a store depletion-operated pathway and that this drives the exocytotic acrosome reaction.
Melanin-concentrating hormone (MCH) is implicated in the control of a number of hormonal axes including the hypothalamic-pituitary adrenal (HPA) axis. Previous studies have shown that there is evidence for both a stimulatory and an inhibitory action on the HPA axis; therefore, we attempted to further characterize the effects of MCH on this axis. Intracerebroventricular injection of MCH increased circulating adrenocorticotropic hormone (ACTH) at 10 min post injection. Injection of MCH directly into the paraventricular nucleus (PVN) was found to increase both circulating ACTH and corticosterone 10 min after injection. Additionally, MCH was found to increase corticotropin-releasing factor (CRF) release from hypothalamic explants, and this effect was abolished by the specific SLC-1 antagonist SB-568849. Neuropeptide EI, a peptide from the same precursor as MCH was also found to increase CRF release from explants. These results suggest that MCH has a stimulatory role in the HPA axis via SLC-1, and that MCH exerts its effects predominantly through the PVN CRF neuronal populations
Progesterone interaction with human spermatozoa promotes a rise in intracellular Ca2+ and can trigger acrosomal exocytosis in capacitated cells. We have used nifedipine, a 1,4-dihydropyridine Ca2+ channel antagonist, to investigate the possibility that Ca2+ channels play a role in the progesterone-stimulated exocytotic response. Cells were assessed biochemically for the generation of diacylglycerol (DAG) and microscopically for acrosome loss using chlortetracycline fluorescence. When motile cells were preincubated for 5 hr using culture conditions similar to those used for successful human in vitro fertilization, a short exposure to progesterone significantly stimulated DAG formation and acrosomal exocytosis. The addition of nifedipine (10 and 100 nM), either at time 0 or just prior to progesterone introduction, significantly inhibited both DAG formation and exocytosis, suggesting that Ca2+ channels are involved in the responses observed. Treatment of capacitated cells with a synthetic permeant DAG stimulated exocytosis irrespective of whether nifedipine was present, indicating that Ca2+ channels function prior to DAG generation. The possibility that an influx of Na+, as well as Ca2+, might be involved in the exocytotic pathway was investigated using the monovalent cation ionophores monensin and nigericin. Both significantly stimulated DAG generation and acrosome loss, but the prior inclusion of nifedipine significantly inhibited all responses. These results strongly suggest that the entry of Ca2+ through Ca2+ channels, with characteristics similar to those of L-type, voltage-sensitive Ca2+ channels found in cardiac and skeletal muscle, is a crucial step in the sequence of events leading to exocytosis in progesterone-stimulated human spermatozoa. An influx of Na+ also may play a role, but at a point prior to the opening of Ca2+ channels.
Using human spermatozoa stimulated with either progesterone or the Ca2+ ionophore A23187 to undergo acrosomal exocytosis, we have investigated potential pathways for generation of diacylglycerol (DAG) and have examined the possibility that DAG plays an important role in the exocytotic response. Both treatments resulted in rapid and considerable generation of DAG, followed by a limited rise in phosphatidic acid (PA). Further experiments indicated that phospholipase C (PLC) activity is important in this generation of DAG, but phospholipase D activity probably is not. In addition, polyphosphoinositide-specific phosphoinositidase C activation and hydrolysis, of phosphatidylinositol 4,5-bisphosphate appears to be a necessary prerequisite for activation of the PLC pathway. Finally the DAG formed appears to be important in acrosomal exocytosis: (i) blocking DAG metabolism with a DAG kinase inhibitor resulted in both increased endogenous levels of DAG and a significantly increased exocytotic response in stimulated cells and (ii) exogenous DAG induced exocytosis in capacitated spermatozoa whereas PA did not. Taken together, these results suggest that DAG plays a key role in events leading to membrane fusion during human sperm acrosomal exocytosis stimulated by natural agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.