Elastic stable intramedullary nailing (ESIN) is generally acknowledged to be the treatment of choice for displaced diaphyseal femoral fractures in children over the age of three years, although complication rates of up to 50% are described. Pre-bending the nails is recommended, but there are no published data to support this. Using synthetic bones and a standardised simulated fracture, we performed biomechanical testing to determine the influence on the stability of the fracture of pre-bending the nails before implantation. Standard ESIN was performed on 24 synthetic femoral models with a spiral fracture. In eight cases the nails were inserted without any pre-bending, in a further eight cases they were pre-bent to 30° and in the last group of eight cases they were pre-bent to 60°. Mechanical testing revealed that pre-bending to 60° produced a significant increase in the stiffness or stability of the fracture. Pre-bending to 60° showed a significant positive influence on the stiffness compared with unbent nails. Pre-bending to 30° improved stiffness only slightly.These findings validate the recommendations for pre-bending, but the degree of pre-bend should exceed 30°. Adopting higher degrees of pre-bending should improve stability in spiral fractures and reduce the complications of varus deformity and shortening.
BackgroundElastic stable intramedullary nailing (ESIN) is the standard treatment for displaced diaphyseal femoral fractures in children. However, high complication rates (10-50%) are reported in complex fractures. This biomechanical study compares the stiffness with a 3rd nail implanted to that in the classical 2C-shaped configuration and presents the application into clinical practice.MethodsFor each of the 3 configurations of ESIN-osteosynthesis with titanium nails eight composite femoral grafts (Sawbones®) with an identical spiral fracture were used: 2C configuration (2C-shaped nails, 2 × 3.5 mm), 3CM configuration (3rd nail from medial) and 3CL configuration (3rd nail from lateral). Each group underwent biomechanical testing in 4-point bending, internal/external rotation and axial compression.Results2C and 3CM configurations showed no significant differences in this spiroid type fracture model. 3CL had a significantly higher stiffness during anterior-posterior bending, internal rotation and 9° compression than 2C, and was stiffer in the lateral-medial direction than 3CM. The 3CL was less stable during p-a bending and external rotation than both the others. As biomechanical testing showed a higher stability for the 3CL configuration in two (a-p corresponding to recurvation and 9° compression to shortening) of three directions associated with the most important clinical problems, we added a 3rd nail in ESIN-osteosynthesis for femoral fractures. 11 boys and 6 girls (2.5-15 years) were treated with modified ESIN of whom 12 were ‘3CL’; due to the individual character of the fractures 4 patients were treated with ‘3CM’ (third nail from medial) and as an exception 1 adolescent with 4 nails and one boy with plate osteosynthesis. No additional stabilizations or re-operations were necessary. All patients achieved full points in the Harris-Score at follow-up; no limb length discrepancy occurred.ConclusionThe 3CL configuration provided a significantly higher stiffness than 2C and 3CM configurations in this biomechanical model. These results were successfully transmitted into clinical practice. All children, treated by 3CL or 3CM according to the individual character of each fracture, needed no additional stabilization and had no Re-Do operations. As a consequence, at our hospital all children with femoral diaphyseal fractures with open physis are treated with this modified ESIN-technique.
BackgroundElastic Stable intramedullary Nailing (ESIN) of dislocated diaphyseal femur fractures has become an accepted method for the treatment in children and adolescents with open physis. Studies focused on complications of this technique showed problems regarding stability, usually in complex fracture types such as spiral fractures and in older children weighing > 40 kg. Biomechanical in vitro testing was performed to evaluate the stability of simulated spiral femoral fractures after retrograde flexible titanium intramedullary nail fixation with and without End caps.MethodsEight synthetic adolescent-size femoral bone models (Sawbones® with a medullar canal of 10 mm and a spiral fracture of 100 mm length identically sawn by the manufacturer) were used for each group. Both groups underwent retrograde fixation with two 3.5 mm Titanium C-shaped nails inserted from medial and lateral entry portals. In the End Cap group the ends of the nails of the eight specimens were covered with End Caps (Synthes Company, Oberdorf, Switzerland) at the distal entry.ResultsBeside posterior-anterior stress (4.11 Nm/mm vs. 1.78 Nm/mm, p < 0.001), the use of End Caps demonstrated no higher stability in 4-point bending compared to the group without End Caps (anterior-posterior bending 0.27 Nm/mm vs. 0.77 Nm/mm, p < 0.001; medial-lateral bending 0.8 Nm/mm vs. 1.10 Nm/mm, p < 0.01; lateral-medial bending 0.53 Nm/mm vs. 0.86 Nm/mm, p < 0.001) as well as during internal rotation (0.11 Nm/° vs. 0.14 Nm/°, p < 0.05). During compression in 9°- position and external rotation there was no statistical significant difference (0.37 Nm/° vs. 0.32 Nm/°, p = 0.13 and 1.29 mm vs. 2.18 mm, p = 0.20, respectively) compared to the "classic" 2-C-shaped osteosynthesis without End Caps.ConclusionIn this biomechanical study the use of End Caps did not improve the stability of the intramedullary flexible nail osteosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.